Skip to main content
Log in

Synthesis of Two-Dimensional NiO Nanostructures by a Combination of Programmable Chemical Deposition and Hydrothermal Treatment

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of two-dimensional NiO nanostructures by programmable chemical deposition in combination with the hydrothermal treatment of intermediates in distilled water and in aqueous ammonia solution was studied. Simultaneous thermal analysis was used to determine the dependence of thermal stability and sorption capacity of particles of the intermediates on the parameters of their hydrothermal treatment and on the composition of the dispersion medium. The results of IR spectroscopy and X-ray diffraction analysis helped us to recognize the crystal structure specifics and the set of functional groups for intermediates and for NiO nanopowders formed on their basis. The average size of the coherent scattering regions (CSRs) of the manufactured nickel oxide powders varied from 4.0 ± 0.5 to 8.6 ± 0.8 nm depending on the hydrothermal treatment parameters. Scanning (SEM) and transmission (TEM) electron microscopy showed that the recrystallization of NiO nanoparticles can be tuned depending on the synthesis parameters to yield two-dimensional nanostructures of various shapes and required sizes, ranging from nanosheets of chaotic geometry to flat hexagons with a variable diameter. Due to their anisotropic microstructure, the manufactured nanomaterials can be effectively used in the fabrication of functional components for advanced alternative energy devices (supercapacitor electrodes, solid oxide fuel cells, etc.), including the use of printing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Yaqoot, P. Diwan, and T. C. Kandpal, Renew. Sustain. Energy Rev. 58, 477 (2016). https://doi.org/10.1016/j.rser.2015.12.224

    Article  Google Scholar 

  2. M. Beccarello and G. Di Foggia, Energies 16, 1345 (2023). https://doi.org/10.3390/en16031345

    Article  CAS  Google Scholar 

  3. O. Gerard, A. Numan, S. Krishnan, et al., J. Energy Storage 50, 104283 (2022). https://doi.org/10.1016/j.est.2022.104283

    Article  Google Scholar 

  4. Y. Sun and W. G. Chong, Mater. Horizons 10, 2373 (2023). https://doi.org/10.1039/D3MH00045A

    Article  CAS  Google Scholar 

  5. S. D. Nehate, S. Sundaresh, A. K. Saikumar, et al., ECS J. Solid State Sci. Technol. 11, 063015 (2022). https://doi.org/10.1149/2162-8777/ac774b

    Article  Google Scholar 

  6. F. Yu, T. Huang, P. Zhang, et al., Energy Storage Mater. 22, 235 (2019). https://doi.org/10.1016/j.ensm.2019.07.023

    Article  Google Scholar 

  7. R. Ramkumar, G. Dhakal, J.-J. Shim, et al., Nanomaterials 12, 3813 (2022). https://doi.org/10.3390/nano12213813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Yu, W. Wang, C. Li, et al., NPG Asia Mater. 6, E129 (2014). https://doi.org/10.1038/am.2014.78

    Article  CAS  Google Scholar 

  9. M. G. Ortiz, A. Visintin, and S. G. Real, J. Electroanal. Chem. 883, 114875 (2021). https://doi.org/10.1016/j.jelechem.2020.114875

    Article  CAS  Google Scholar 

  10. A. Khalil, B. S. Lalia, and R. Hashaikeh, J. Mater. Sci. 51, 6624 (2016). https://doi.org/10.1007/s10853-016-9946-z

    Article  CAS  Google Scholar 

  11. S. Arya and S. Verma, in Rechargeable Batteries: History, Progress, and Applications, Eds. R. Boddula, Inamuddin, R. A. M. Asiri (Scrivener Publishing LLC, Wiley, 2020). https://doi.org/10.1002/9781119714774.ch8

  12. S. A. Mozaffari, S. H. Mahmoudi Najafi, and Z. Norouzi, Electrochim. Acta 368, 137633 (2021). https://doi.org/10.1016/j.electacta.2020.137633

    Article  CAS  Google Scholar 

  13. M. Singh, D. Zappa, and E. Comini, Mater. Adv. 3, 5922 (2022). https://doi.org/10.1039/D2MA00317A

    Article  CAS  Google Scholar 

  14. Abd. Mohd, A. F. Fatah, A. Z. Rosli, A. A. Mohamad, et al., Energies 15, 5188 (2022). https://doi.org/10.3390/en15145188

  15. M. Bonomo, J. Nanoparticle Res. 20, 222 (2018). https://doi.org/10.1007/s11051-018-4327-y

    Article  CAS  Google Scholar 

  16. C. Nie, W. Zeng, X. Jing, et al., J. Mater. Sci. Mater. Electron. 29, 7480 (2018). https://doi.org/10.1007/s10854-018-8739-3

    Article  CAS  Google Scholar 

  17. X. Qi, W. Zheng, X. Li, et al., Sci. Rep. 6, 33241 (2016). https://doi.org/10.1038/srep33241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Yan, X. Tong, J. Wang, et al., Mater. Lett. 136, 74 (2014). https://doi.org/10.1016/j.matlet.2014.07.183

    Article  CAS  Google Scholar 

  19. H. Pang, Q. Lu, Y. Li, et al., Chem. Commun. 48, 7542 (2009). https://doi.org/10.1039/b914898a

    Article  CAS  Google Scholar 

  20. W. Sun, L. Xiao, and X. Wu, J. Alloys Compd. 772, 465 (2019). https://doi.org/10.1016/j.jallcom.2018.09.185

    Article  CAS  Google Scholar 

  21. G. Hou, Y. Du, B. Cheng, et al., ACS Appl. Nano Mater. 1, 5981 (2018). https://doi.org/10.1021/acsanm.8b01398

    Article  CAS  Google Scholar 

  22. G. Tong, Q. Hu, W. Wu, et al., J. Mater. Chem. 22, 17494 (2012). https://doi.org/10.1039/c2jm31790g

    Article  CAS  Google Scholar 

  23. Z. K. Yang, L. X. Song, R. R. Xu, et al., CrystEngComm 16, 9083 (2014). https://doi.org/10.1039/C4CE00998C

    Article  CAS  Google Scholar 

  24. C. Liu, C. Li, K. Ahmed, et al., Sci. Rep. 6, 29183 (2016). https://doi.org/10.1038/srep29183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Pang, Q. Lu, Y. Zhang, et al., Nanoscale 2, 920 (2010). https://doi.org/10.1039/c0nr00027b

    Article  CAS  PubMed  Google Scholar 

  26. T. Kavitha and H. Yuvaraj, J. Mater. Chem. 21, 15686 (2011). https://doi.org/10.1039/c1jm13278d

    Article  CAS  Google Scholar 

  27. M. A. Bhosale and B. M. Bhanage, Adv. Powder Technol. 26, 422 (2015). https://doi.org/10.1016/j.apt.2014.11.015

    Article  CAS  Google Scholar 

  28. Y. Zhu, C. Cao, S. Tao, et al., Sci. Rep. 4, 5787 (2014). https://doi.org/10.1038/srep05787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. U. T. Nakate, G. H. Lee, R. Ahmad, et al., Ceram. Int. 44, 15721 (2018). https://doi.org/10.1016/j.ceramint.2018.05.246

    Article  CAS  Google Scholar 

  30. T. Taşköprü, M. Zor, and E. Turan, Mater. Res. Bull. 70, 633 (2015). https://doi.org/10.1016/j.materresbull.2015.05.032

    Article  CAS  Google Scholar 

  31. P. Bose, S. Ghosh, S. Basak, et al., J. Asian Ceram. Soc. 4, 1 (2016). https://doi.org/10.1016/j.jascer.2016.01.006

    Article  Google Scholar 

  32. J. Wu, W.-J. Yin, W.-W. Liu, et al., J. Mater. Chem. A 4, 10940 (2016). https://doi.org/10.1039/C6TA03137D

    Article  CAS  Google Scholar 

  33. V. M. Kumar, S. R. Polaki, R. Krishnan, et al., J. Alloys Compd. 931, 167420 (2023). https://doi.org/10.1016/j.jallcom.2022.167420

    Article  CAS  Google Scholar 

  34. R. Tu, K. Leng, C. Song, et al., RSC Adv. 13, 19585 (2023). https://doi.org/10.1039/D3RA02544F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Lin, H. Jia, H. Liang, et al., Adv. Sci. 5, 1700687 (2018). https://doi.org/10.1002/advs.201700687

    Article  CAS  Google Scholar 

  36. L. Lin, T. Liu, B. Miao, et al., Mater. Lett. 102-103, 43 (2013). https://doi.org/10.1016/j.matlet.2013.03.103

    Article  CAS  Google Scholar 

  37. H. Xiao, S. Yao, H. Liu, et al., Prog. Nat. Sci. Mater. Int. 26, 271 (2016). https://doi.org/10.1016/j.pnsc.2016.05.007

    Article  CAS  Google Scholar 

  38. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1292 (2020). https://doi.org/10.1134/S0036023620090193

    Article  CAS  Google Scholar 

  39. T. L. Simonenko, V. A. Bocharova, and N. P. Simonenko, Russ. J. Inorg. Chem. 66, 1633 (2021). https://doi.org/10.1134/S0036023621110176

    Article  CAS  Google Scholar 

  40. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1779 (2021). https://doi.org/10.1134/S0036023621120160

    Article  CAS  Google Scholar 

  41. S. G. Real, M. G. Ortiz, and E. B. Castro, J. Solid State Electrochem. 21, 233 (2017). https://doi.org/10.1007/s10008-016-3355-8

    Article  CAS  Google Scholar 

  42. M. Veseem and A. H. Umar, Metal Oxide Nanostructures and Their Applications, in 5 vols. (2010).

  43. T. L. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Chemosensors 11, 138 (2023). https://doi.org/10.3390/chemosensors11020138

    Article  CAS  Google Scholar 

  44. S. Begum, V. Muralidharan, and C. Ahmedbasha, Int. J. Hydrogen Energy 34, 1548 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.074

    Article  CAS  Google Scholar 

  45. S. B. Abitkar, S. D. Dhas, N. P. Jadhav, et al., J. Mater. Sci. Mater. Electron. 32, 8657 (2021). https://doi.org/10.1007/s10854-021-05529-x

    Article  CAS  Google Scholar 

  46. D. A. Dudorova, T. L. Simonenko, N. P. Simonenko, et al., Molecules 28, 2515 (2023). https://doi.org/10.3390/molecules28062515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. W. He and X. Li, S. An, et al., Sci. Rep. 9, 10838 (2019). https://doi.org/10.1038/s41598-019-47120-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. T. Zhang, S. Liu, G. L. Pan, et al., J. Mater. Chem. A 2, 1524 (2014). https://doi.org/10.1039/C3TA13578K

    Article  CAS  Google Scholar 

  49. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 578, 151984 (2022). https://doi.org/10.1016/j.apsusc.2021.151984

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XRD and SEM studies were carried out using shared experimental facilities supported by the Ministry of Science and Higher Education of the Russian Federation as part of the IGIC RAS State assignment.

Funding

The work (in terms of NiO nanopowders preparation) was supported by the Council for Grants of the President of the Russian Federation for the state support of young Russian scientists (MK-1749.2022.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Dudorova, D.A., Simonenko, N.P. et al. Synthesis of Two-Dimensional NiO Nanostructures by a Combination of Programmable Chemical Deposition and Hydrothermal Treatment. Russ. J. Inorg. Chem. 68, 1865–1874 (2023). https://doi.org/10.1134/S0036023623602131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602131

Keywords:

Navigation