Skip to main content
Log in

Low-Temperature Synthesis of Highly Dispersed Strontium Aluminate

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new method for producing highly dispersed strontium aluminate with specified properties (low bulk density, particle size and shape) is described. The essence of the method is the sequential multi-stage heat treatment of a concentrated water-carbohydrate solution of Al(NO3)3, Sr(NO3)2, and D-glucose. The final product has a molar ratio of SrO : Al2O3 = 1 : 1. The main stages of the synthesis have been characterized by X-ray powder diffraction, SEM, and TEM methods. The initial stages of crystallization of SrAl2O4 upon heating at 1400°C have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. P. Ptáček, F. Šoukal, T. Opravil, et al., Ceram. Int. 40, 9971 (2014). https://doi.org/10.1016/j.ceramint.2014.02.095

    Article  CAS  Google Scholar 

  2. B. M. J. Smets, Mater. Chem. Phys. 16, 283 (1987). https://doi.org/10.1016/0254-0584(87)90103-9

    Article  CAS  Google Scholar 

  3. T. A. Khattab, M. Rehan, Y. Hamdy, et al., Ind. Eng. Chem. Res. 57, 11483 (2018). https://doi.org/10.1021/acs.iecr.8b01594

    Article  CAS  Google Scholar 

  4. D. G. Calatayud, T. Jardiel, E. Cordero-Oyonarte, et al., Int. J. Mol. Sci. 23, 3410 (2022). https://doi.org/10.3390/ijms23063410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Madej, M. Silarski, and S. Parzych, Mater. Chem. Phys. 260, 124095 (2021). https://doi.org/10.1016/j.matchemphys.2020.124095

    Article  CAS  Google Scholar 

  6. F. Clabau, X. Rocquefelte, S. Jobic, et al., Chem. Mater. 17, 3904 (2005). https://doi.org/10.1021/cm050763r

    Article  CAS  Google Scholar 

  7. S. Sharma, J. James, S. Gupta, et al., Materials 16, 236 (2023). https://doi.org/10.3390/ma16010236

  8. H. Tseng, W. Tzou, S. Wei, et al., J. Mater. Res. Technol. 9, 14051 (2020). https://doi.org/10.1016/j.jmrt.2020.10.003

    Article  CAS  Google Scholar 

  9. H. Terraschke, M. Suta, M. Adlung, et al., J. Spectrosc. (Hindawi) 2015, 1 (2015). https://doi.org/10.1155/2015/541958

    Article  CAS  Google Scholar 

  10. J. Li, J. Wang, Y. Yu, et al., J. Rare Earths 35, 530 (2017). https://doi.org/10.1016/S1002-0721(17)60944-X

    Article  Google Scholar 

  11. Y. Zhang, L. Li, X. Zhang, et al., J. Rare Earths 26, 656 (2008). https://doi.org/10.1016/S1002-0721(08)60156-8

    Article  Google Scholar 

  12. Y. Jin, X. Long, Y. Zhu, et al., J. Rare Earths 34, 1206 (2016). https://doi.org/10.1016/S1002-0721(16)60155-2

    Article  CAS  Google Scholar 

  13. L. Chen, Z. Zhang, Y. Tian, et al., J. Rare Earths 35, 127 (2017). https://doi.org/10.1016/S1002-0721(17)60890-1

    Article  CAS  Google Scholar 

  14. R. Zhao, R. Pang, H. Li, et al., J. Rare Earths 32, 797 (2014). https://doi.org/10.1016/S1002-0721(14)60143-5

    Article  CAS  Google Scholar 

  15. A. Kumar, G. Kedawat, P. Kumar, et al., New J. Chem. 39, 3380 (2015). https://doi.org/10.1039/c4nj02333a

    Article  CAS  Google Scholar 

  16. J. Xu and S. Tanabe, J. Lumin. 205, 581 (2019). https://doi.org/10.1016/j.jlumin.2018.09.047

    Article  CAS  Google Scholar 

  17. V. Castaing, E. Arroyo, A. Becerro, et al., J. Appl. Phys. 130, 080902 (2021). https://doi.org/10.1063/5.0053283

    Article  CAS  Google Scholar 

  18. A. Ege and S. Yerci, et al., J. Lumin. 131, 2432 (2011). https://doi.org/10.1016/j.jlumin.2011.05.051

    Article  CAS  Google Scholar 

  19. R. E. Rojas-Hernandez, M. A. Rodriguez, F. Rubio-Marcos, et al., J. Mater. Chem. C 3, 1268 (2015). https://doi.org/10.1039/c4tc02262a

    Article  CAS  Google Scholar 

  20. T. A. Kochergina, S. S. Aleshkina, M. M. Khudyakov, et al., Quantum Electron. 48, 733 (2018). https://doi.org/10.1070/QEL16740

    Article  CAS  Google Scholar 

  21. I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov, et al., Ceram. Int. 48, 7522 (2022). https://doi.org/10.1016/j.ceramint.2021.11.296

    Article  CAS  Google Scholar 

  22. G. P. Panasyuk, I. V. Kozerozhets, E. A. Semenov, et al., Inorg. Mater. 55, 929 (2019). https://doi.org/10.1134/S0020168519090139

    Article  CAS  Google Scholar 

  23. I. I. Buchinskaya and N. I. Sorokin, Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023623600806

  24. A. Y. Solovieva, Y. V. Ioni, A. O. Baskakov, et al., Russ. J. Inorg. Chem. 62, 711 (2017). https://doi.org/10.1134/S0036023617060225

    Article  CAS  Google Scholar 

  25. S. H. Tatumi, A. Soares, D. R. G. Tudela, et al., Radiat. Phys. Chem. 157, 15 (2019). https://doi.org/10.1016/j.radphyschem.2018.12.013

    Article  CAS  Google Scholar 

  26. N. I. Steblevskaya, M. V. Belobeletskaya, M. A. Medkov, et al., Russ. J. Inorg. Chem. 62, 275 (2017). https://doi.org/10.1134/S0036023617030160

    Article  CAS  Google Scholar 

  27. M. Sera, M. Yamamoto, K. Tomita, et al., Chem. Phys. Lett. 780, 138916 (2021). https://doi.org/10.1016/j.cplett.2021.138916

    Article  CAS  Google Scholar 

  28. I. V. Kozerozhets, V. V. Avdeeva, G. A. Buzanov, et al., Inorganics 10, 212 (2022). https://doi.org/10.3390/inorganics10110212

    Article  CAS  Google Scholar 

  29. I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov, et al., Powder Technol. 413, 118030 (2023). https://doi.org/10.1016/j.powtec.2022.118030

    Article  CAS  Google Scholar 

  30. K. T. Jacob and V. Shreyas, J. Mater. Sci. 53, 1723 (2017). https://doi.org/10.1007/s10853-017-1634-0

    Article  CAS  Google Scholar 

  31. S. Kim, H. Won, N. Hayk, et al., Mater. Sci. Eng. B 176, 1521 (2011). https://doi.org/10.1016/j.mseb.2011.09.014

    Article  CAS  Google Scholar 

  32. C.-N. Xu, H. Yamada, X. Wang, et al., Appl. Phys. Lett. 84, 3040 (2004). https://doi.org/10.1063/1.1705716

  33. I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov, et al., Russ. J. Inorg. Chem. 65, 1384 (2020). https://doi.org/10.1134/S0036023620090090

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies were carried out using the equipment of the Center for Collective Use of the Physical Research Methods at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences. For SEM studies, we used the equipment of the Educational and Methodological Center for Lithography and Microscopy of the Moscow State University.

Funding

This work was carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Kozlova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, L.O., Ioni, Y.V., Son, A.G. et al. Low-Temperature Synthesis of Highly Dispersed Strontium Aluminate. Russ. J. Inorg. Chem. 68, 1744–1751 (2023). https://doi.org/10.1134/S0036023623602374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602374

Keywords:

Navigation