Skip to main content
Log in

Structure and Luminescent Properties of Tellurium(IV) Bromide Complex with p-Toluidinium (HPT)2TeBr6·H2O

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A complex of tellurium(IV) bromide with p-toluidinium, (HPT)2TeBr6·H2O, was synthesized, its crystal structure was determined by X-ray diffraction, and its absorption and luminescent properties were studied. A comparative study of the luminescent properties at 77 K was performed for a number of tellurium(IV) bromide complexes with outer-sphere cations: cesium, rubidium, tetraethylammonium, and p-toluidinium. The electronic and geometric aspects determining the absorption and luminescent properties of the tellurium(IV) bromide complexes are considered. At 77 K, (HPT)2TeBr6·H2O is characterized by luminescence in the near-IR range; the luminescence band maximum is significantly red-shifted (>50 nm) with respect to those of the analogues. The luminescence intensity of complex compounds is influenced by the geometric structure (type of anionic sublattice and the structure and degree of distortion of the coordination polyhedron of the s2-ion). The coordination polyhedron distortion and the presence of a dense system of hydrogen bonds account for the minimum luminescence intensity of the (HPT)2TeBr6·H2O complex among other tellurium(IV) bromide compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. E. Maughan, A. M. Ganose, M. M. Bordelon, et al., J. Am. Chem. Soc. 138, 8453 (2016). https://doi.org/10.1021/jacs.6b03207

    Article  CAS  PubMed  Google Scholar 

  2. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  PubMed  Google Scholar 

  3. B. M. Benin, D. N. Dirin, V. Morad, et al., Angew. Chem., Int. Ed. 57, 11329 (2018). https://doi.org/10.1002/anie.201806452

    Article  CAS  Google Scholar 

  4. S. F. Hoefler, G. Trimmel, and T. Rath, Monatsh. Chem. 148, 795 (2017). https://doi.org/10.1007/s00706-017-1933-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Cai, W. Xie, H. Ding, et al., Chem. Mater. 29, 7740 (2017). https://doi.org/10.1021/acs.chemmater.7b02013

    Article  CAS  Google Scholar 

  6. S. Si, X. Guo, W. Gan, et al., J. Lumin. 251, 119212 (2022). https://doi.org/10.1016/j.jlumin.2022.119212

    Article  CAS  Google Scholar 

  7. X. Li, Z. Wang, H. Sun, et al., J. Colloid Interface Sci. 633, 808 (2023). https://doi.org/10.1016/j.jcis.2022.11.132

    Article  CAS  PubMed  Google Scholar 

  8. Q. Mahmood, M. H. Alhossainy, M. S. Rashide, et al., Mater. Sci. Eng. 266, 115064. https://doi.org/10.1016/j.mseb.2021.115064

  9. M. Fizer, M. Slivka, V. Sidey, et al., J. Mol. Struct. 1235, 130227 (2021). https://doi.org/10.1016/j.molstruc.2021.130227

    Article  CAS  Google Scholar 

  10. Z.-P. Wang, J.-Y. Wang, J.-R. Li, et al., Chem. Commun. 15, 3094 (2015). https://doi.org/10.1039/C4CC08825E

    Article  CAS  Google Scholar 

  11. V. I. Vovna, A. A. Dotsenko, V. V. Korochentsev, et al., J. Mol. Struct. 1091, 138 (2015). https://doi.org/10.1016/j.molstruc.2015.02.068

    Article  CAS  Google Scholar 

  12. T. V. Sedakova and A. G. Mirochnik, Opt. Spectrosc. 119, 54 (2015). https://doi.org/10.1134/S0030400X15070267

    Article  CAS  Google Scholar 

  13. J. He, M. Zeller, A. D. Hunter, and Zt. Xu, J. Am. Chem. Soc. 134, 1553 (2012). https://doi.org/10.1021/ja2073559

    Article  CAS  PubMed  Google Scholar 

  14. A. Strasser and A. Vogler, J. Photochem. Photobiol., A 165, 115 (2004). https://doi.org/10.1016/j.jphotochem.2004.03.007

    Article  CAS  Google Scholar 

  15. A. Strasser and A. Vogler, Inorg. Chem. Commun. 7, 528 (2004). https://doi.org/10.1016/j.inoche.2003.12.039

    Article  CAS  Google Scholar 

  16. J. Degen, M. Diehl, and H. H. Schmidtke, Mol. Phys. 78, 103 (1993). https://doi.org/10.1080/00268979300100101

    Article  CAS  Google Scholar 

  17. J. S. Nagpal, S. V. Godbole, G. Varadharajan, et al., Radiat. Prot. Dosim. 80, 417 (1998). https://doi.org/10.1093/oxfordjournals.rpd.a032562

    Article  CAS  Google Scholar 

  18. G. Blasse, Chem. Phys. Lett. 104, 160 (1984). https://doi.org/10.1016/0009-2614(84)80188-8

    Article  CAS  Google Scholar 

  19. G. Blasse, Rev. Inorg. Chem. 5, 319 (1983).

    CAS  Google Scholar 

  20. H. Nikol and A. Vogler, Inorg. Chem. 32, 1072 (1993). https://doi.org/10.1021/ic00059a006

    Article  CAS  Google Scholar 

  21. R. Wernicke, H. Kupka, W. Ensslin, et al., Chem. Phys. 47, 235 (1980). https://doi.org/10.1016/0301-0104(80)85009-9

    Article  CAS  Google Scholar 

  22. H. H. Schmidtke, M. Diehl, and J. Degen, J. Phys. Chem. 96, 3605 (1992). https://doi.org/10.1021/j100188a011

    Article  CAS  Google Scholar 

  23. H. Kinkely and A. Vogler, Inorg. Chem. Commun. 11, 36 (2008). https://doi.org/10.1016/j.inoche.2007.10.010

    Article  CAS  Google Scholar 

  24. P. J. H. Drummen, H. Donker, W. M. A. Smit, et al., Chem. Phys. Lett. 144, 460 (1988). https://doi.org/10.1016/0009-2614(88)87296-8

    Article  CAS  Google Scholar 

  25. G. Blasse, G. J. Dirksen, and W. Abriel, Chem. Phys. Lett. 136, 460 (1987). https://doi.org/10.1016/0009-2614(87)80287-7

    Article  CAS  Google Scholar 

  26. A. A. Dotsenko, V. I. Vovna, V. V. Korochentsev, et al., Inorg. Chem. 58, 6796 (2019). https://doi.org/10.1021/acs.inorgchem.9b00250

    Article  CAS  PubMed  Google Scholar 

  27. L. Sobczyk, R. Jakubas, and J. Zaleski, Polish. J. Chem. 71, 265 (1997).

    CAS  Google Scholar 

  28. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, Russ. J. Coord. Chem. 36, 651 (2010). https://doi.org/10.1134/S1070328410090034

    Article  CAS  Google Scholar 

  29. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, Russ. J. Inorg. Chem. 56, 213 (2011). https://doi.org/10.1134/S0036023611020045

    Article  CAS  Google Scholar 

  30. T. V. Sedakova, A. G. Mirochnik, and V. E. Karasev, Opt. Spectrosc. 110, 755 (2011). https://doi.org/10.1134/S0030400X11030192

    Article  CAS  Google Scholar 

  31. T. V. Sedakova and A. G. Mirochnik, and V. E. Karasev, Opt. Spectrosc. 105, 517 (2008). https://doi.org/10.1134/S0030400X08100056

    Article  CAS  Google Scholar 

  32. B. V. Bukvetskii, T. V. Sedakova, and A. G. Mirochnik, J. Struct. Chem. 53, 306 (2012). https://doi.org/10.1134/S002247661202014X

    Article  CAS  Google Scholar 

  33. T. V. Sedakova and A. G. Mirochnik, Russ. J. Coord. Chem. 38, 106 (2012). https://doi.org/10.1134/S1070328412020017

    Article  CAS  Google Scholar 

  34. A. G. Mirochnik, B. V. Bukvetskii, T. V. Storozhuk, et al., Rus. J. Inorg. Chem. 48, 501 (2003).

    Google Scholar 

  35. A. Waskowska, J. Janczak, and Z. Czapla, J. Alloys Compd. 196, 255 (1993). https://doi.org/10.1016/0925-8388(93)90605-M

    Article  CAS  Google Scholar 

  36. A. K. Das and I. D. Brown, Can. J. Chem. 44, 939 (1966).

    Article  CAS  Google Scholar 

  37. G. Engel, Z. Kristallogr. 144, P. 341 (1977).

    Google Scholar 

  38. A. A. Dotsenko, O. L. Shcheka, V. I. Vovna, et al., J. Mol. Struct. 1109, 13 (2016). https://doi.org/10.1016/j.molstruc.2015.12.067

    Article  CAS  Google Scholar 

  39. A. A. Dotsenko, V. I. Vovna, V. V. Korochentsev, et al., Russ. Chem. Bull. 65, 2393 (2015). https://doi.org/10.1007/s11172-015-1168-z

    Article  CAS  Google Scholar 

  40. T. V. Sedakova and A. G. Mirochnik, Opt. Spectrosc. 120, 268 (2016). https://doi.org/10.1134/S0030400X16020223

    Article  CAS  Google Scholar 

  41. T. V. Sedakova and A. G. Mirochnik, Opt. Spectrosc. 128, 1566 (2020). https://doi.org/10.1134/S0030400X20100239

    Article  CAS  Google Scholar 

  42. Yu. V. Karyakin and I. I. Angelov, Pure Substances (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  43. A. K. Babko and I. V. Pyatnitskii, Quantitative Analysis (Gos. Nauch. Tekhn. Izd-vo Khim. Liter., Moscow, 1956) [in Russian].

    Google Scholar 

  44. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Bruker AXS Inc., Madison, Wisconsin, 1998.

  45. Bruker. SHELXTL/PC.Versions 5.10. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, Bruker AXS Inc. Madison, Wisconsin, 1998.

  46. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  47. W. Abriel and J. Ihringer, J. Solid State Chem. 52, 274 (1984). https://doi.org/10.1016/0022-4596(84)90010-0

    Article  CAS  Google Scholar 

  48. L. M. Volkova and A. A. Udovenko, Problems of Crystal Chemistry (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  49. W. Abriel, Acta Crystallogr., Sect. B 42, 449 (1986). https://doi.org/10.1107/S0108768186097896

    Article  Google Scholar 

  50. D. J. Stufkens, Rec. Trav. Chim. 89, 1185 (1970).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science, state assignment FWFN (0205)-2022-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sedakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukvetskii, B.V., Sedakova, T.V. & Mirochnik, A.G. Structure and Luminescent Properties of Tellurium(IV) Bromide Complex with p-Toluidinium (HPT)2TeBr6·H2O. Russ. J. Inorg. Chem. 68, 1761–1767 (2023). https://doi.org/10.1134/S0036023623602295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602295

Keywords:

Navigation