Skip to main content
Log in

Phase Equilibria in the NaF–Na3ClMoO4–Na3ClWO4 Stable Triangle of the NaF–NaCl–Na2MoO4–Na2WO4 Four-Component System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Theoretical and experimental studies of the NaF–Na3ClMoO4–Na3ClWO4 stable secant triangle of the NaF–NaCl–Na2MoO4–Na2WO4 four-component system have been carried out. The review of the literature concerned with the boundary elements of the title system has shown two options for the numbers and compositions of crystallizing phase: in case the solid solutions are stable, two solid phases would be formed, and in case of their decay, three solid phases would. The experimental tools used to study the NaF–Na3ClMoO4–Na3ClWO4 system were differential thermal analysis (DTA) and X-ray powder diffraction (XRD). The melting point and composition of the mixture that correspond to point d, which lies on monovariant curve e1e2 connecting binary eutectics, have been determined. X-ray powder diffraction showed two solid phases, namely, NaF and Na3ClMoxW1 – xO4 continuous solid solutions (CSS), in an alloy of point d composition. The nonexistence of invariant points in the title system has been shown. The CSS based on Na3ClMoO4 and Na3ClWO4 are stable. The projection of the phase assemblage of the system on the composition triangle is represented by two crystallization fields of the terminal components: a sodium fluoride field, which is the dominant one, and a Na3ClMoxW1 – xO4 CSS field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zh. A. Kochkarov and R. A. Bisergaeva, Materialovedenie 4, 12 (2022). https://doi.org/10.31044/1684-579X-2022-0-6-17-22

  2. Zh. A. Kochkarov, Materialovedenie 6, 17 (2022). https://doi.org/10.31044/1684-579X-2022-0-4-12-18

    Article  Google Scholar 

  3. A. V. Kosov, O. L. Semerikova, S. V. Vakarin, et al., Russ. Metall. 8, 803 (2019). https://doi.org/10.1134/S0036029519080093

    Article  Google Scholar 

  4. W. Qin, X. Xi, Q. Zhang, L. Zhang, et al., Intern R. Electrochem. Sci. 14, 10420 (2019). https://doi.org/10.20964/2019.11.15

    Article  CAS  Google Scholar 

  5. Z. A. Cherkesov, Izv. VUZov, Ser. Khim. Khim. Tekhnol. 63, 2019 (2020). https://doi.org/10.6060/ivkkt.20206309.6205

    Article  CAS  Google Scholar 

  6. F. M. Mamedov, D. M. Babanly, I. R. Amiraslanov, et al., Russ. J. Inorg. Chem. 65, 1747 (2020). https://doi.org/10.1134/S0036023620110121

    Article  Google Scholar 

  7. I. I. Aliev, N. A. Mamedova, F. M. Sadygov, et al., Russ. J. Inorg. Chem. 65, 1585 (2020). https://doi.org/10.1134/S0036023620100010

    Article  CAS  Google Scholar 

  8. M. M. Asadov, N. A. Akhmedova, S. R. Mamedova, et al., Russ. J. Inorg. Chem. 65, 1061 (2020). https://doi.org/10.1134/S0036023620070013

    Article  CAS  Google Scholar 

  9. S. S. Likhacheva, E. M. Egorova, and I. K. Garkushin, Russ. J. Inorg. Chem. 65, 1047 (2020). https://doi.org/10.1134/S0036023620070141

    Article  CAS  Google Scholar 

  10. L. Soliev, Russ. J. Inorg. Chem. 65, 212 (2020). https://doi.org/10.1134/S0036023620020187

    Article  CAS  Google Scholar 

  11. I. K. Garkushin, A. V. Burchakov, M. A. Sukharenko, et al., Russ. J. Inorg. Chem. 65, 1398 (2020). https://doi.org/10.1134/S003602362009003X

    Article  CAS  Google Scholar 

  12. A. V. Kertman and A. V. Ruseikina, Russ J. Inorg. Chem. 65, 1756 (2020). https://doi.org/10.1134/S003602362011008X

    Article  Google Scholar 

  13. D. G. Cherkasov, V. V. Danilina, and K. K. Il’in, Russ. J. Inorg. Chem. 66, 883 (2021). https://doi.org/10.1134/S0036023621060073

    Article  CAS  Google Scholar 

  14. N. S. Kistanova and S. A. Mazunin, Russ. J. Inorg. Chem. 66, 250 (2020). https://doi.org/10.1134/S0036023620090077

    Article  Google Scholar 

  15. M. A. Sukharenko, I. K. Garkushin, V. T. Osipov, et al., Russ. J. Inorg. Chem. 66, 1527 (2021). https://doi.org/10.1134/S0036023621100181

    Article  CAS  Google Scholar 

  16. P. P. Fedorov, Russ. J. Inorg. Chem. 66, 245 (2021). https://doi.org/10.1134/S0036023621020078

    Article  CAS  Google Scholar 

  17. A. M. Elokhov, O. S. Kudryashova, and A. E. Lesnov, Russ. J. Phys. Chem. A 93, 1822 (2019). https://doi.org/10.1134/S003602441909005X

    Article  CAS  Google Scholar 

  18. N. S. Kistanova, A. R. Mukminova, I. N. Koneva, et al., Russ. J. Inorg. Chem. 66, 1736 (2021). https://doi.org/10.1134/S0036023621110127

    Article  CAS  Google Scholar 

  19. A. V. Stankova, A. M. Elokhov, A. E. Lesnov, et al., Russ. J. Inorg. Chem. 65, 1922 (2020). https://doi.org/10.1134/S0036023620120177

    Article  CAS  Google Scholar 

  20. A. M. Elokhov and O. S. Kudryashova, Russ. J. Inorg. Chem. 67, 1818 (2022). https://doi.org/10.1134/s0036023622600903

    Article  CAS  Google Scholar 

  21. I. K. Garkushin, A. V. Burchakov, M. A. Sukharenko, et al., Russ. J. Inorg. Chem. 65, 1398 (2020). https://doi.org/10.1134/S003602362009003X

    Article  CAS  Google Scholar 

  22. Thermal Constants of Substances, Vol. X, Tables of Accepted Values: Li, Na, Ed. by V. P. Glushko (Moscow) [in Russian].

  23. I. K. Garkushin, M. A. Sukharenko, A. V. Burchakov, et al., Modeling and Research Phase Equilibrium States and Chemical Interactions in Systems of Molybdates and Tungstates of s 1 and s 2 Elements (Innovats. Mashinostr., Moscow, 2022) [in Russian].

    Google Scholar 

  24. A. V. Burochakov, I. K. Garkushin, S. N. Milov, et al., Butlerov Commun. 60, 124 (2019).

    Article  Google Scholar 

  25. Yu. V. Moshchenskii, Prib. Tekh. Eksper. 6, 143 (2003).

    Google Scholar 

  26. L. M. Kovba, X-ray Diffraction in Inorganic Chemistry (Izd. MGU, Moscow, 1991) [in Russian].

    Google Scholar 

  27. A. S. Kosmynin and A. S. Trunin, Projection Thermographic Research Method Heterogeneous Equilibria in Condensed Multicomponent Systems (Samar. Gos. Tekhn. Univ., Samara, 2006) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. FSSE-2023-0003) as part of the Government assignment to the Samara State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sukharenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, I.K., Matveev, A.A. & Sukharenko, M.A. Phase Equilibria in the NaF–Na3ClMoO4–Na3ClWO4 Stable Triangle of the NaF–NaCl–Na2MoO4–Na2WO4 Four-Component System. Russ. J. Inorg. Chem. 68, 1812–1817 (2023). https://doi.org/10.1134/S0036023623700353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623700353

Keywords:

Navigation