Skip to main content
Log in

Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phase diagram of the SrF2–MgF2 system has been studied by differential thermal analysis (DTA) and X-ray powder diffraction (XRD). The stability area of the compound SrMgF4 is very small, and its extent is about 20°С between 870 and 890°С. The formation of compounds by magnesium fluoride and strontium fluoride with other metal fluorides is considered in the M versus X coordinates, where M is the cumulative moment of the cation and X is the cation electronegativity. Two areas of compound formation were identified for each of the fluorides. Magnesium and strontium fluorides are amphoteric compounds in terms of the Lewis acid and base theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Banks, S. Nakajima, and M. Shone, J. Electrochem. Soc. 127, 2234 (1980).

    Article  CAS  Google Scholar 

  2. Q. Bingyi and E. Banks, Mater. Res. Bull. 17, 1185 (1982).

    Article  CAS  Google Scholar 

  3. N. Ishizawa, K. Suda, B. E. Etschmann, et al., Acta Crystallogr., Sect. C 57, 784 (2001).

    CAS  Google Scholar 

  4. S. C. Abrahams, Acta Crystallogr., Sect. B 58, 34 (2002).

    Article  CAS  Google Scholar 

  5. S. V. Mel’nikova, L. I. Isaenko, A. A. Goloshumova, and S. I. Lobanov, Phys. Solid State 56, 757 (2014). https://doi.org/10.1134/S1063783414040192

    Article  CAS  Google Scholar 

  6. A. P. Pivovarova, V. A. Saltykova, O. V. Mel’nikova, and E. G. Semin, Proceedings of the VII All-Union Symposium on the Chemistry of Inorganic Fluorides, Dushanbe, 1984, p. 266 (Nauka, Moscow, 1984).

  7. P. P. Fedorov and L. V. Medvedeva, Russ. J. Inorg. Chem. 34, 1528 (1989).

    Google Scholar 

  8. L. A. Olkhovaya, P. P. Fedorov, D. D. Ikrami, and B. P. Sobolev, J. Therm. Anal. 15, 355 (1979). https://doi.org/10.1007/BF01903660

    Article  CAS  Google Scholar 

  9. V. A. Stasyuk, Cand. Sci. (Chem.) Dissertation, MITKhT im. M.V. Lomonosova, Moscow, 1998.

  10. D. D. Ikrami, A. A. Luginina, L. A. Ol’khovaya, and E. D. Ruchkin, Zh. Neorg. Khim. 32, 1453 (1987).

    Google Scholar 

  11. H. G. Schnering and P. Bleckmann, Naturwissenschaften 55, 342 (1968).

    Article  Google Scholar 

  12. P. P. Fedorov, A. A. Luginina, N. Yu. Tabachkova, A. A. Alexandrov, L. V. Bad’yanova, and S. V. Kuznetsov, Russ. J. Inorg. Chem. 67, 1211 (2022). https://doi.org/10.1134/S0036023622080101

    Article  CAS  Google Scholar 

  13. P. P. Fedorov, A. A. Alexandrov, S. L. Korableva, and E. V. Chernova, Cryst. Res. Techn. 58, 2200251 (2023). https://doi.org/10.1002/crat.202200251

    Article  CAS  Google Scholar 

  14. A. A. Goloshumova, L. I. Isaenko, D. Yu. Naumov, et al., J. Nanoelectron. Optoelectron. 9, 1 (2014).

    Article  Google Scholar 

  15. I. N. Ogorodnikov, V. A. Pustovarov, L. I. Isaenko, and S. I. Lobanov, Opt. Mater. 118, 111234 (2021). https://doi.org/10.1016/j.optmat.2021.111234

    Article  CAS  Google Scholar 

  16. I. Prigozhin and R. Defei, Chemical Thermodynamics (Nauka, Novosibirsk, 1966) [in Russian].

    Google Scholar 

  17. R. I. Efremova and E. V. Matizen, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 2, 3 (1970).

    Google Scholar 

  18. B. F. Naylor, J. Am. Chem. Soc. 67, 150 (1945).

    Article  CAS  Google Scholar 

  19. P. P. Fedorov and P. I. Fedorov, Zh. Neorg. Khim. 18, 205 (1973).

    CAS  Google Scholar 

  20. P. I. Fedorov and P. P. Fedorov, Zh. Neorg. Khim. 19, 215 (1974).

    CAS  Google Scholar 

  21. P. P. Fedorov and P. I. Fedorov, Zh. Neorg. Khim. 20, 1088 (1975).

    CAS  Google Scholar 

  22. I. I. Buchinskaya and P. P. Fedorov, Russ. Chem. Rev. 73, 371 (2004). https://doi.org/10.1070/RC2004v073n04ABEH000811

    Article  CAS  Google Scholar 

  23. R. V. Davidovich, P. P. Fedorov, and A. I. Popov, Rev. Inorg. Chem. 36, 105 (2016). https://doi.org/10.1515/revic-2015-0019

    Article  CAS  Google Scholar 

  24. R. V. Davidovich, P. P. Fedorov, and A. I. Popov, Rev. Inorg. Chem. 37, 147 (2017). https://doi.org/10.1515/revic-2017-0010

    Article  CAS  Google Scholar 

  25. P. P. Fedorov, Russ. J. Inorg. Chem. 66, 1455 (2021). https://doi.org/10.1134/S0036023621100041

    Article  CAS  Google Scholar 

  26. P. P. Fedorov and E. V. Chernova, J. Fluorine Chem. 263, 110031 (2022). https://doi.org/10.1016/j.jfluchem.2022.110031

    Article  CAS  Google Scholar 

  27. P. P. Fedorov, Inorg. Mater. 33, 1197 (1997).

    CAS  Google Scholar 

  28. P. P. Fedorov and L. A. Ol’khovaya, Zh. Neorg. Khim. 26, 218 (1981).

    CAS  Google Scholar 

  29. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  30. S. S. Batsanov, Zh. Neorg. Khim. 18, 205 (1973).

    Google Scholar 

  31. R. E. Thoma, Advances in Molten Salt Chemistry, Ed. by J. Braunstein, vol. 3 (Plenum Press, New York, 1975).

    Google Scholar 

  32. B. G. Korshunov, V. V. Safonov, and D. V. Drobot, Fusibility Diagrams of Halide Systems of Transition Elements (Metallurgiya, Moscow, 1977) [in Russian].

    Google Scholar 

  33. B. G. Korshunov, V. V. Safonov, and D. V. Drobot, Phase Equilibria in Halide Systems (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  34. Fusibility Diagrams of Salt Systems. Directory, Ed. by V. I. Posypaiko, vols. 1, 2 (Metallurgiya, Moscow, 1977) [in Russian].

  35. D. Babel and A. Tressaud, Inorganic Solid Fluorides. Chemistry and Physics, Ed. by P. Hagenmuller (Academic Press, Orlando, 1985).

    Google Scholar 

  36. W. Massa and D. Babel, Chem. Rev. 88, 275 (1988).

    Article  CAS  Google Scholar 

  37. M. Leblanc, V. Maisonneuve, and A. Tressaud, Chem. Rev. 115, 1191 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Z. Mazej, J. Fluorine Chem. 265, 110073 (2023).

    Article  CAS  Google Scholar 

  39. P. P. Fedorov, Z. I. Zhmurova, O. S. Bondareva, et al., Zh. Neorg. Khim. 39, 1010 (1994).

    CAS  Google Scholar 

  40. P. P. Fedorov, M. A. Sattarova, F. M. Spiridonov, and B. P. Sobolev, Russ. J. Inorg. Chem. 32, 90 (1987).

    Google Scholar 

  41. P. P. Fedorov, I. I. Buchinskaya, O. S. Bondareva, et al., Zh. Neorg. Khim. 40, 1380 (1995).

    CAS  Google Scholar 

  42. D. D. Ikrami, S. V. Petrov, P. P. Fedorov, et al., Zh. Neorg. Khim. 29, 1062 (1984).

    CAS  Google Scholar 

  43. D. D. Ikrami, P. P. Fedorov, A. A. Luginina, and L. A. Ol’khovaya, Zh. Neorg. Khim. 30, 1261 (1985).

    CAS  Google Scholar 

  44. P. P. Fedorov, M. N. Mayakova and V. A. Maslov, Nanosyst.: Phys. Chem. Math. 8, 830 (2017). https://doi.org/10.17586/2220-8054-2017-8-6-830-834

    Article  CAS  Google Scholar 

  45. I. I. Buchinskaya and P. P. Fedorov, Russ. J. Inorg. Chem. 43, 1106 (1998).

    Google Scholar 

  46. L. A. Ol’khovaya, G. A. Karpenko, D. D. Ikrami, and P. P. Fedorov, Russ. J. Inorg. Chem. 36, 1639 (1991).

    Google Scholar 

  47. B. P. Sobolev, K. B. Seiranian, L. S. Garashina, and P. P. Fedorov, J. Solid State Chem. 28, 51 (1979). https://doi.org/10.1016/0022-4596(79)90057-4

    Article  CAS  Google Scholar 

  48. P. P. Fedorov, A. A. Alexandrov, V. V. Voronov, et al., J. Am. Ceram. Soc. 104, 2836 (2021). https://doi.org/10.1111/jace.17666

    Article  CAS  Google Scholar 

  49. P. P. Fedorov and I. I. Buchinskaya, Russ. Chem. Rev. 81, 1 (2012). https://doi.org/10.1070/RC2012v081n01ABEH004207

    Article  CAS  Google Scholar 

  50. M. A. Kuvakin and Z. M. Novikova, Zh. Neorg. Khim. 18, 1356 (1973).

    CAS  Google Scholar 

  51. R. Roy, J. Am. Ceram. Soc. 37, 581 (1954).

    Article  CAS  Google Scholar 

  52. A. H. M. Schrama, Physica A 68, 279 (1973).

    CAS  Google Scholar 

  53. W. Kerbe, M. Weil, F. Kubel, and H. Hagemann, Mater. Res. Bull. 39, 343 (2004).

    Article  CAS  Google Scholar 

  54. K. Recker, F. Wallrafen, and S. Haussühl, J. Cryst. Growth 26, 97 (1974).

    Article  CAS  Google Scholar 

  55. J. D. Donaldson and B. J. Senior, J. Chem. Soc. A11, 1821 (1967).

    Article  Google Scholar 

  56. D. D. Ikrami, N. I. Kuznetsova, and O. I. Balashova, Proceedings of the All-Union Symposium on Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 149.

  57. J. Portier, A. Tressaud, F. Menil, et al., J. Solid State Chem. 1, 100 (1969).

    Article  CAS  Google Scholar 

  58. L. N. Komissarova and B. I. Pokrovskii, Dokl. Akad. Nauk SSSR 149, 599 (1963).

    CAS  Google Scholar 

  59. J.-C. Cretenet, Rev. Chim. Miner. 10, 399 (1973).

    CAS  Google Scholar 

  60. T. V. Ostrovskaya and S. A. Aminova, Zh. Neorg. Khim. 15, 657 (1970).

    CAS  Google Scholar 

  61. B. G. Müller, Z. Anorg. Allg. Chem. 555, 57 (1987).

    Article  Google Scholar 

  62. A. A. Kostyukov and A. B. Karpov, Tr. Leningrad. Politekhn. Inst. 188, 588 (1957).

    Google Scholar 

  63. V. D. Vvedenskii, N. B. Strashko, G. A. Teterin, and E. G. Semin, Proceedings of the All-Union Symposium on Chemistry of Inorganic Fluorides, Dushanbe, 1984, p. 81.

  64. M. Weil and F. Werner, Monatsh. Chem. 769 (2001).

  65. J. Bandemehr, D. Baumann, M. Seibald, et al., Eur. J. Inorg. Chem. 3861 (2021). https://doi.org/10.1002/ejic.202100576

  66. D. Reinen and F. Steffens, Z. Anorg. Allg. Chem. 441, 63 (1978).

    Article  CAS  Google Scholar 

  67. J. Chassaing, D. Bizot, and C. Montail, Rev. Chim. Miner. 20, 753 (1983).

    CAS  Google Scholar 

  68. Z. Mazej, J. Fluorine Chem. 125, 1723 (2004).

    Article  CAS  Google Scholar 

  69. A. I. Popov, M. D. Val’kovskii, and V. F. Sukhoverkhov, Zh. Neorg. Khim. 35, 2831 (1990).

    CAS  Google Scholar 

  70. M. Samouel, P. Salle, J. Dixuier, and P. Plurieu, C. R. Acad. Sci. C274, 955 (1972).

    Google Scholar 

  71. D. Gantar, I. Leban, B. Frlec, and J. H. Holloway, J. Chem. Soc., Dalton Trans. 2379 (1987).

  72. C. Montail and J. Chassaing, Rev. Chim. Miner. 16, 104 (1979).

    Google Scholar 

  73. E. G. Rakov, G. G. Fedorov, and B. N. Sudarikov, Proceedings of the All-Union Symposium on Chemistry of Inorganic Fluorides, Odessa, 1972, p. 98.

  74. Z. A. Mateiko and G. A. Bukhalova, Zh. Neorg. Khim. 7, 165 (1962).

    CAS  Google Scholar 

  75. V. T. Berezhnaya and G. A. Bukhalova, Zh. Neorg. Khim. 12, 2179 (1967).

    CAS  Google Scholar 

  76. V. T. Berezhnaya and G. A. Bukhalova, Zh. Neorg. Khim. 5, 2061 (1960).

    CAS  Google Scholar 

  77. B. V. Beznosikov, Kristallografiya 23, 113 (1978).

    CAS  Google Scholar 

  78. R. H. Nafziger, J. Am. Ceram. Soc. 54, 467 (1971).

    Article  CAS  Google Scholar 

  79. D. N. Karimov, I. I. Buchinskaya, and N. I. Sorokin, Inorg. Mater. 55, 495 (2019). https://doi.org/10.1134/S002016851905008X

    Article  CAS  Google Scholar 

  80. B. Müller and R. Hoppe, Mater. Res. Bull. 7, 1297 (1972).

    Article  Google Scholar 

  81. D. Dumora, J. Ravez, and P. Hagenmuller, Bull. Soc. Chim. Fr. 4, 1301 (1970).

    Google Scholar 

  82. D. Dumora, J. Ravez, and P. Hagenmuller, Bull. Soc. Chim. Fr. 6, 2010 (1971).

    Google Scholar 

  83. G. Denes, J. Pannetier, and J. Lucas, C. R. Acad. Sci. C280, 831 (1975).

    Google Scholar 

  84. J. Ravez, R. De Pape, and P. Hagenmuller, Bull. Soc. Chim. Fr. 11, 4375 (1967).

    Google Scholar 

  85. P. P. Fedorov, Russ. J. Inorg. Chem. 57, 959 (2012). https://doi.org/10.1134/S003602361207011X

    Article  CAS  Google Scholar 

  86. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39, 17 (1981).

    Article  Google Scholar 

  87. B. P. Sobolev, The Rare Earth Trifluorides (Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  88. J. Ravez and P. Hagenmuller, Bull. Soc. Chim. Fr. 10, 3452 (1971).

    Google Scholar 

  89. J. Grannec and J. Ravez, C. R. Acad. Sci. C270, 2059 (1970).

    Google Scholar 

  90. J. Ravez, J. Grannec, and J. Portier, Rev. Chim. Miner. 8, 131 (1971).

    CAS  Google Scholar 

  91. J. Ravez and P. Hagenmuller, Bull. Soc. Chim. Fr. 7, 2545 (1967).

    Google Scholar 

  92. R. Von der Mühll and J. Ravez, Rev. Chim. Miner. 11, 652 (1974).

    Google Scholar 

  93. J. Ravez, J. Grannec, and R. Muhll, C. R. Acad. Sci. C272, 1042 (1971).

    Google Scholar 

  94. J. Ravez, M. Vassiliadis, and P. Hagenmuller, C. R. Acad. Sci. C262, 1876 (1969).

    Google Scholar 

  95. J.-C. Cretenet, C. R. Acad. Sci. C268, 945 (1969).

    Google Scholar 

  96. J. Ravez, J. Viollet, R. De Pape, and P. Hagenmuller, Bull. Soc. Chim. Fr. 4, 1325 (1967).

    Google Scholar 

  97. O. N. Breusov, G. Trapp, A. V. Novoselova, and Yu. P. Simanov, Zh. Neorg. Khim. 4, 671 (1959).

    CAS  Google Scholar 

  98. C. Fouassier, B. Latourrette, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 933 (1976).

    Article  CAS  Google Scholar 

  99. R. De Pape and J. Ravez, C. R. Acad. Sci. 254, 4171 (1962).

    Google Scholar 

  100. P. Gravereau, C. Mirambet, L. Fournes, et al., Acta Crystallogr., Sect. C 46, 2294 (1990).

    Article  Google Scholar 

  101. T. Fleischer and R. Hoppe, Z. Anorg. Allg. Chem. 490, 121 (1982).

    Article  Google Scholar 

  102. R. Hoppe, Angew. Chem., Int. Ed. Engl. 20, 63 (1981).

    Article  Google Scholar 

  103. E. Largeau and M. El-Ghozi, J. Fluorine Chem. 89, 223 (1998).

    Article  CAS  Google Scholar 

  104. J. Ravez, M. Vassiliadis, R. Muhll, and P. Hagenmuller, Rev. Chim. Miner. 7, 967 (1970).

    CAS  Google Scholar 

  105. K. Feldner and R. Hoppe, Rev. Chim. Miner. 20, 351 (1983).

    CAS  Google Scholar 

  106. W. H. Zachariasen, Acta Crystallogr. 2, 388 (1949).

    Article  CAS  Google Scholar 

  107. C. Keller and M. Salzer, J. Inorg. Nucl. Chem. 29, 2925 (1967).

    Article  CAS  Google Scholar 

  108. I. D. Ratnikova, Yu. M. Korenev, and A. V. Novoselova, Zh. Neorg. Khim. 25, 816 (1980).

    CAS  Google Scholar 

  109. J. P. Laval, J. Solid State Chem. 309, 122962 (2022).

    Article  CAS  Google Scholar 

  110. J. Chassaing, C. Montail, and D. Bizot, J. Solid State Chem. 43, 327 (1982).

    Article  CAS  Google Scholar 

  111. B. Frlec, D. Gantar, and J. H. Holloway, J. Fluorine Chem. 19, 485 (1982).

    Article  CAS  Google Scholar 

  112. T. Bunic, M. Tramsek, E. Goreshnik, et al., Solid State Sci. 9, 88 (2007).

    Article  CAS  Google Scholar 

  113. P. P. Fedorov, Kristallografiya 42, 1141 (1997).

    CAS  Google Scholar 

  114. P. P. Fedorov, Neorg. Mater. 33, 1415 (1997).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The facilities of the Shared Facilities Center of the Prokhorov General Physics Institute, Russian Academy of Sciences, and the “Materials Science” Shared Facilities Center of the Ogarev Mordovian State University were used in the work.

Funding

This work was fulfilled as part of the strategic project “New Generation Materials and Energy Saving” implemented at the Ogarev Mordovian State University in accordance with the “Priority 2030” program and in accordance with the scientific work plan of the Prokhorov General Physics Institute, Russian Academy of Sciences (theme “Kvant”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P., Pynenkov, A.A., Uslamina, M.A. et al. Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides. Russ. J. Inorg. Chem. 68, 1789–1798 (2023). https://doi.org/10.1134/S0036023623602325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602325

Keywords:

Navigation