Skip to main content
Log in

Vanishing Superstructure: Crystal and Local Structures of Ni3 – xMTe2 (M = Sb, Sn)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Series of compounds Ni3 – xMTe2 (M = Sb, Sn; x = 0–1) were obtained by high-temperature sealed-tube synthesis and characterized by X-ray powder diffraction and 121Sb and 119Sn Mössbauer spectroscopy. For Ni3–xSnTe2, it was shown that, as х varies from 1 to 0, nickel is distributed over three possible sites, two of which give a total occupancy of 1 and have ordered vacancies. Meanwhile, for Ni3–xSbTe2 and х other than ~0.9–1.0, the vacancy ordering disappears. The temperature dependence of the presence or absence of vacancy ordering was established for Ni2SbTe2; the ordering disappears on heating above 600°C and appears again on cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. K. Reynolds, J. G. Bales, and F. J. DiSalvo, Chem. Mater. 14, 4746 (2002). https://doi.org/10.1021/cm020585r

    Article  CAS  Google Scholar 

  2. A. N. Kuznetsov and A. A. Serov, Eur. J. Inorg. Chem. 3, 373 (2016). https://doi.org/10.1002/ejic.201501197

    Article  CAS  Google Scholar 

  3. A. A. Isaeva, A. I. Baranov, Th. Doert, et al., Russ. Chem. Bull. 56, 1694 (2007).

    Article  CAS  Google Scholar 

  4. A. A. Isaeva, A. I. Baranov, L. Kloo, et al., Solid State Sci. 11, 1071 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.03.005

    Article  CAS  Google Scholar 

  5. A. I. Baranov, A. A. Isaeva, L. Kloo, et al., Inorg. Chem. 42, 6667 (2003). https://doi.org/10.1002/chin.200352007

    Article  CAS  PubMed  Google Scholar 

  6. A. I. Baranov, A. A. Isaeva, L. Kloo, et al., J. Solid State Chem. 177, 3616 (2004). https://doi.org/10.1016/j.jssc.2004.05.061

    Article  CAS  Google Scholar 

  7. A. A. Isaeva, A. I. Baranov, Th. Doert, et al., J. Solid State Chem. 180, 221 (2007). https://doi.org/10.1016/j.jssc.2006.09.003

    Article  CAS  Google Scholar 

  8. E. A. Stroganova, S. M. Kazakov, V. N. Khrustalev, et al., J. Solid State Chem. 306, 122815 (2022). https://doi.org/10.1016/j.jssc.2021.122815

    Article  CAS  Google Scholar 

  9. E. A. Stroganova, S. M. Kazakov, N. N. Efimov, et al., Dalton Trans. 49, 15081 (2020). https://doi.org/10.1039/D0DT03082A

    Article  CAS  PubMed  Google Scholar 

  10. A. N. Kuznetsov, E. A. Stroganova, and E. Yu. Zakharova, Russ. J. Inorg. Chem. 64, 1625 (2019). https://doi.org/10.1134/S0036023619130059

    Article  CAS  Google Scholar 

  11. A. N. Kuznetsov, E. A. Stroganova, A. A. Serov, et al., J. Alloys Compd. 696, 413 (2017). https://doi.org/10.1016/j.jallcom.2016.11.292

    Article  CAS  Google Scholar 

  12. O. N. Litvinenko, A. N. Kuznetsov, A. V. Olenev, et al., Russ. Chem. Bull. 56, 1945 (2007).

    Article  CAS  Google Scholar 

  13. A. A. Isaeva, O. N. Makarevich, A. N. Kuznetsov, et al., Eur. J. Inorg. Chem. 1395 (2010). https://doi.org/10.1002/ejic.200901027

  14. A.-K. Larsson, L. Noren, R. L. Withers, et al., J. Solid State Chem. 180, 2723 (2007). https://doi.org/10.1016/j.jssc.2007.07.020

    Article  CAS  Google Scholar 

  15. L. Noren, R. L. Withers, and F. J. Brink, J. Alloys Compd. 353, 133 (2003). https://doi.org/10.1016/S0925-8388(02)01309-9

    Article  CAS  Google Scholar 

  16. H.-J. Deiseroth, K. Aleksandrov, C. Reiner, et al., Eur. J. Inorg. Chem. 8, 1561 (2006). https://doi.org/10.1002/ejic.200501020

    Article  CAS  Google Scholar 

  17. H.-J. Deiseroth, F. Sprirovski, C. Reiner, et al., Z. Kristallogr. New Cryst. Struct. 222, 169 (2007). https://doi.org/10.1524/ncrs.2007.0070

    Article  CAS  Google Scholar 

  18. T. Dankwort, V. Duppel, H.-J. Deiseroth, et al., Semicond. Sci. Technol. 31, 7 (2016). https://doi.org/10.1088/0268-1242/31/9/094001

    Article  CAS  Google Scholar 

  19. T. K. Reynolds, R. F. Kelley, and F. J. DiSalvo, J. Alloys Compd. 366, 136 (2004). https://doi.org/10.1016/j.jallcom.2003.07.008

    Article  CAS  Google Scholar 

  20. G. A. Buzanov, E. A. Stroganova, A. Yu. Bykov, et al., Russ. J. Inorg. Chem. 67, 616 (2022). https://doi.org/10.1134/S0036023622050035

    Article  CAS  Google Scholar 

  21. A. N. Kuznetsov, E. A. Stroganova, E. Yu. Zakharova, et al., J. Solid State Chem. 250, 90 (2017). https://doi.org/10.1016/j.jssc.2017.03.020

    Article  CAS  Google Scholar 

  22. F. Laufek, M. Drábek, R. Skála, et al., Can. Mineral. 45, 1213 (2007). https://doi.org/10.2113/gscanmin.45.5.1213

    Article  CAS  Google Scholar 

  23. Bruker AXS Topas V4.2: General profile and structure analysis software for powder diffraction data (Karlsruhe, 2009).

  24. V. I. Nikolaev and V. S. Rusakov, Mössbauer Studies of Ferrites (Izd. MGU, Moscow, 1985) [in Russia].

    Google Scholar 

  25. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (OPNI, IYaF NYaTs RK, Almaty, 2000) [in Russian].

  26. V. S. Rusakov, Izv. RAN, Ser. Fiz. 63, 1389 (1999).

    CAS  Google Scholar 

  27. V. S. Rusakov and K. K. Kadyrzhanov, Hyperfine Interact. 164, 87 (2005). https://doi.org/10.1007/s10751-006-9236-2

    Article  CAS  Google Scholar 

  28. E. Yu. Zakharova, A. Yu. Makhaneva, S. M. Kazakov, et al., Russ. J. Inorg. Chem. 64, 1486 (2019). https://doi.org/10.1134/S0036023619120192

    Article  CAS  Google Scholar 

  29. P. P. Fedorov, A. A. Popov, Y. V. Shubin, et al., Russ. J. Inorg. Chem. 67, 2018 (2022). https://doi.org/10.1134/S0036023622601453

    Article  CAS  Google Scholar 

  30. P. E. Lippens, Solid State Commun. 113, 399 (2000). https://doi.org/10.1016/S0038-1098(99)00501-3

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant 20-33-90209 Post-graduates). X-ray diffraction studies were supported by the Program of Development of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroganova, E.A., Kazakov, S.M., Fabrichnii, P.B. et al. Vanishing Superstructure: Crystal and Local Structures of Ni3 – xMTe2 (M = Sb, Sn). Russ. J. Inorg. Chem. 68, 1714–1724 (2023). https://doi.org/10.1134/S0036023623602246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602246

Keywords:

Navigation