Skip to main content
Log in

A Novel Method for Selecting Inverse Kinematic Solutions Based on Configuration Space Partition for 6R Noncuspidal Manipulators

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The selection of an optimal solution from multiple inverse kinematics solutions (IKSs) is a fundamental task in manipulator motion. However, the conventional minimum joint motion criterion (MJM) method suffers from drawbacks such as high computational time and the inability to ensure configuration invariance. With the prevalence of noncuspidal structures in commercial manipulators, a novel IKS selection methodology is exigent. This paper analyzes the limitations of the MJM method by geometric representations of the IKS formal and proposes a novel IKS selection method based on configuration space decomposition. The configuration space of noncuspidal manipulators is partitioned into independent subdomains called uniqueness domains (UD). Subsequently, a bijection between configuration, UD, and IKS is established for selecting IKS, and three important related theorems are proven. The proposed method offers low computational cost, and allows configuration invariance in continuous trajectory tracking or point-to-point planning. Finally, the physical experiment results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availibility

Not applicable.

References

  1. Fu, Z., Yang, W., Yang, Z.: Solution of inverse kinematics for 6r robot manipulators with offset wrist based on geometric algebra. J. Mech. Robot. 5, 031010 (2013). https://doi.org/10.1115/1.4024239

    Article  Google Scholar 

  2. Jiokou Kouabon, A.G., Melingui, A., Mvogo Ahanda, J.J.B., Lakhal, O., Coelen, V., KOM, M., Merzouki, R.: A learning framework to inverse kinematics of high dof redundant manipulators. Mech. Mach. Theory. 153, 103978 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103978

  3. Lloyd, S., Irani, R.A., Ahmadi, M.: Fast and robust inverse kinematics of serial robots using halley’s method. IEEE T. Robot. 38, 2768–2780 (2022). https://doi.org/10.1109/TRO.2022.3162954

    Article  Google Scholar 

  4. Xiao, F., Li, G., Jiang, D., Xie, Y., Yun, J., Liu, Y., Huang, L., Fang, Z.: An effective and unified method to derive the inverse kinematics formulas of general six-dof manipulator with simple geometry. Mech. Mach. Theory. 159, 104265 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104265

    Article  Google Scholar 

  5. Zhang, X., Xiao, F., Tong, X., Yun, J., Liu, Y., Sun, Y., Tao, B., Kong, J., Xu, M., Chen, B.: Time optimal trajectory planing based on improved sparrow search algorithm. Front. Bioeng. Biotech. 10, 852408 (2022). https://doi.org/10.3389/fbioe.2022.852408

    Article  Google Scholar 

  6. Wenger, P., Chablat, D.: A review of cuspidal serial and parallel manipulators. J. Mech. Robot. 15, 040801 (2022). https://doi.org/10.1115/1.4055677

    Article  Google Scholar 

  7. Wenger, P.: Uniqueness domains and regions of feasible paths for cuspidal manipulators. IEEE T. Robot. 20, 745–750 (2004). https://doi.org/10.1109/TRO.2004.829467

    Article  Google Scholar 

  8. Parenti-Castelli, V., Innocenti, C.: Position analysis of robot manipulators: regions and subregions. Paper presented at Proceedings of 1988 conference on Advances in Robot Kinematics, Ljubljana, 151–158 Sept. 1988 (1988)

  9. Borrel, P., Liegeois, A.: A study of multiple manipulator inverse kinematic solutions with applications to trajectory planning and workspace determination. Paper presented at Proceedings. 1986 IEEE International Conference on Robotics and Automation, San Francisco, 1180–1185 Apr. 1986 (1986)

  10. Wenger, P.: A new general formalism for the kinematic analysis of all nonredundant manipulators. Paper presented at Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice, 442–447 May. 1992 (1992)

  11. El Omri, J., Wenger, P.: How to recognize simply a non-singular posture changing 3-DOF manipulator. Paper presented at 7th International Conference on Advanced Robotics, 215–222 1995 (1995)

  12. Salunkhe, D.H., Spartalis, C., Capco, J., Chablat, D., Wenger, P.: Necessary and sufficient condition for a generic 3r serial manipulator to be cuspidal. Mech. Mach. Theory. 171, 104729 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104729

    Article  Google Scholar 

  13. Baili, M., Wenger, P., Chablat, D.: A classification of 3R orthogonal manipulators by the topology of their workspace. Paper presented at IEEE International Conference on Robotics and Automation, New Orleans, 1933–1938 Apr. 2004 (2004)

  14. Wenger, P.: Cuspidal and noncuspidal robot manipulators. Robotica. 25, 677–689 (2007). https://doi.org/10.1017/S0263574707003761

    Article  Google Scholar 

  15. Wenger, P.: Design of cuspidal and non-cuspidal robot manipulators. Paper presented at International Conference on Robotics and Automation, New Orleans, 2172–2177 Apr. 1997 (1997)

  16. Kalra, P., Mahapatra, P.B., Aggarwal, D.K.: An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots. Mech. Mach. Theory. 41, 1213–1229 (2006). https://doi.org/10.1016/j.mechmachtheory.2005.11.005

    Article  Google Scholar 

  17. Lee, C.s.g., Ziegler, M.: Geometric approach in solving inverse kinematics of puma robots. IEEE T. Aero. Elec. Sys. AES-20, 695–706 (1984). https://doi.org/10.1109/TAES.1984.310452

  18. Balkan, T., Özgören, M.K., Sahir Arıkan, M.A., Baykurt, H.M.: A method of inverse kinematics solution including singular and multiple configurations for a class of robotic manipulators. Mech. Mach. Theory. 35, 1221–1237 (2000). https://doi.org/10.1016/S0094-114X(99)00079-8

  19. Xu, Z., Zhou, X., Wu, H., Li, X., Li, S.: Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: an rnn approach with guaranteed performance. IEEE T. Ind. Electron. 69, 3887–3897 (2021). https://doi.org/10.1109/TIE.2021.3073305

    Article  Google Scholar 

  20. Liu, B., Fu, W., Wang, W., Li, R., Gao, Z., Peng, L., Du, H.: Cobot motion planning algorithm for ensuring human safety based on behavioral dynamics. Sensors. 22, 4376 (2020). https://doi.org/10.3390/s22124376

    Article  Google Scholar 

  21. Yahşi, O.S., Özgören, K.: Minimal joint motion optimization of manipulators with extra degrees of freedom. Mech. Mach. Theory. 19, 325–330 (1984). https://doi.org/10.1016/0094-114X(84)90066-1

    Article  Google Scholar 

  22. Nearchou, A.C.: Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm. Mech. Mach. Theory. 33, 273–292 (1998). https://doi.org/10.1016/S0094-114X(97)00034-7

    Article  MathSciNet  Google Scholar 

  23. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE T. Robotic. Autom. 7, 489–499 (1991). https://doi.org/10.1109/70.86079

    Article  Google Scholar 

  24. Deng, H., Xie, C.: An improved particle swarm optimization algorithm for inverse kinematics solution of multi-dof serial robotic manipulators. Soft Comput. 25, 13695–13708 (2021). https://doi.org/10.1007/s00500-021-06007-6

    Article  Google Scholar 

  25. Dereli, S., Köker, R.: A meta-heuristic proposal for inverse kinematics solution of 7-dof serial robotic manipulator: quantum behaved particle swarm algorithm. Artif. Intell. Rev. 53, 949–964 (2020). https://doi.org/10.1007/s10462-019-09683-x

    Article  Google Scholar 

  26. Schreiber, L.-T., Gosselin, C.: Determination of the inverse kinematics branches of solution based on joint coordinates for universal robots-like serial robot architecture. J. Mech. Robot. 14, 034501 (2021). https://doi.org/10.1115/1.4052805

    Article  Google Scholar 

  27. Adam, W., Nikos, A., Miatliuk, Kanstantsin, Moulianitis, Vassilis, Valsamos, C.: Optimization of dynamic task location within a manipulator’s workspace for the utilization of the minimum required joint torques. Electronics. (2021). https://doi.org/10.3390/electronics10030288

  28. Liu, Y., Xiao, F., Tong, X., Tao, B., Xu, M., Jiang, G., Chen, B., Cao, Y., Sun, N.: Manipulator trajectory planning based on work subspace division. Concurrency and Computation: Practice and Experience. 34, 6710 (2022). https://doi.org/10.1002/cpe.6710

    Article  Google Scholar 

  29. Pieper, D.: The kinematics of manipulation under computer control. PhD thesis, Stanford University Stanford, CA, USA (1968)

  30. Liu, Q., Yang, D., Hao, W., Wei, Y.: Research on Kinematic Modeling and Analysis Methods of UR Robot. Paper presented at IEEE 4th Information Technology and Mechatronics Engineering Conference , Chongqing, 159–164 Dec. 2018 (2018)

  31. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics. 55, 248–266 (2018). https://doi.org/10.1016/j.mechatronics.2018.02.009

    Article  Google Scholar 

  32. Li, G., Xiao, F., Zhang, X., Tao, B., Jiang, G.: An inverse kinematics method for robots after geometric parameters compensation. Mech. Mach. Theory. 174, 104903 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104903

    Article  Google Scholar 

  33. Kebria, P.M., Al-wais, S., Abdi, H., Nahavandi, S.: Kinematic and dynamic modelling of UR5 manipulator. Paper presented at IEEE International Conference on Systems, Man, and Cybernetics, Budapest, 4229–4234 Oct. 2016 (2016)

  34. Mavroidis, C., Ouezdou, F.B., Bidaud, P.: Inverse kinematics of six-degree of freedom general and special manipulators using symbolic computation. Robotica. 12, 421–430 (1994). https://doi.org/10.1017/S0263574700017975

  35. Gualtieri, M., Platt, R.: Robotic pick-and-place with uncertain object instance segmentation and shape completion. IEEE Robot. Autom. Lett. 6, 1753–1760 (2021). https://doi.org/10.1109/LRA.2021.3060669

  36. Zhang, X., Li, G., Xiao, F., Jiang, D., Tao, B., Kong, J., Jiang, G., Liu, Y.: An inverse kinematics framework of mobile manipulator based on unique domain constraint. Mech. Mach. Theory. 183, 105273 (2020). https://doi.org/10.1016/j.mechmachtheory.2023.105273

Download references

Acknowledgements

This work was supported by grants of the National Natural Science Foundation of China (Grant Nos.52075530,51575407, 51975324, 51505349, 61733011, 41906177); the Grants of Hubei Provincial Department of Education (D20191105); the Grants of National Defense PreResearch Foundation of Wuhan University of Science and Technology (GF201705) and Open Fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in Wuhan University of Science and Technology (2018B07,2019B13) and Open Fund of Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance in China Three Gorges University (2020KJX02, 2021KJX13); Science and Technology Planning Project of Inner Mongolia Autonomous Region (2020GG0105).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, X.F.Z.; experiment, X.F.Z.; writing-original draft preparation, X.F.Z.; supervision, G.F.L and M.M.X; review and editing, J.T.Y and D.J.; funding acquisition, G.F.L.. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Gongfa Li or Manman Xu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Inverse Kinematics of 6R Ball Wrist Manipulator

Appendix A: Inverse Kinematics of 6R Ball Wrist Manipulator

This appendix derives the inverse kinematics of the 6R ball-wrist manipulator based on the method in reference [4]. In this appendix, the exponential product method is used, because its convenience brings more compact kinematic equations [36].

1.1 A.1 Recalls of Exponential Product Method

The relative motion between adjacent joints is described by the exponential product formula (POE), as shown in Eq. A1,

$$\begin{aligned} \begin{array}{l}e^{q \hat{\xi }}=\left[ \begin{array}{cc}e^{q \hat{\varvec{w}}} &{} \left( \varvec{I}-e^{q \hat{\varvec{v}}}\right) (\varvec{w} \times \varvec{v})+q \varvec{w} \varvec{w}^{\textrm{T}} \varvec{v} \\ \textbf{0} &{} 1\end{array}\right] \\ \varvec{v}=\varvec{r} \times \varvec{w}\end{array} \end{aligned}$$
(A1)

where q is the angle of rotation. w is the unit vector of the rotation axis and w is its anti-symmetric matrix. I is a 3×3 identity matrix. r is a point on the axis of rotation. \({\xi }\)= (w v)\(^T\) is the Lie algebraic representation of a Euclidean group SE(3), called twist.

The \(e^{q \hat{\varvec{w}}}\) can be calculated by Rodrigues formula as Eq. A2.

$$\begin{aligned} e^{q \hat{\varvec{w}}} = \varvec{I} + \hat{\varvec{w}\sin {q}+\hat{\varvec{w}}}^{\textrm{2}}(1-\cos {q}) \end{aligned}$$
(A2)

The forward kinematics of the manipulator can be represented by Eq. A3.

$$\begin{aligned} \varvec{T}_t = e^{q_1\hat{\varvec{\xi }}_1}...e^{q_6\hat{\varvec{\xi }}_6}\varvec{g}_0 \end{aligned}$$
(A3)

where g\(_0\) is the initial pose matrix of T under S, and T\(_t\) denotes the pose of EE, expands as follows

$$\begin{aligned} \begin{aligned} \varvec{T}_{\varvec{t}}&=[\varvec{n}, \varvec{o}, \varvec{a}, \varvec{p} ; 0,0,0,1] \\ {}&=\left[ \begin{array}{cccc}n_{x} &{} o_{x} &{} a_{x} &{} p_{x} \\ n_{y} &{} o_{y} &{} a_{y} &{} p_{y} \\ n_{z} &{} o_{z} &{} a_{z} &{} p_{z} \\ 0 &{} 0 &{} 0 &{} 1\end{array}\right] \end{aligned} \end{aligned}$$
(A4)

1.2 A.2 Inverse Kinematics Solution of 6R Ball Wrist Manipulator

The twists of the 6R ball wrist manipulator are shown in Table 5. The initial pose matrix g\(_0\) is given in Eq. A5. The forward kinematic model of the manipulator can be obtained from Eq. A3.

$$\begin{aligned} \begin{aligned} \varvec{g}_{0} =\left[ \begin{array}{cccc} 0 &{} 1 &{} 0 &{} a_2+a_3+a_4 \\ 0 &{} -1 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} a_1+a_4 \\ 0 &{} 0 &{} 0 &{} 1\end{array}\right] \end{aligned} \end{aligned}$$
(A5)

Four equations can be obtained by decoupling Eq. A2, which are shown as follow

$$\begin{aligned} a_{5} c_{23}+a_{3} s_{23}+a_{2} s_{2}=\varvec{p}_{m 1}^{\textrm{T}} \varvec{x}_{m 1} \end{aligned}$$
(A6)
$$\begin{aligned} a_{5} s_{23}-a_{3} c_{23}-a_{2} c_{2}=\varvec{p}_{m 2}^{\textrm{T}} \varvec{x}_{m 2} \end{aligned}$$
(A7)
$$\begin{aligned} \varvec{p}_{m 3}^{\textrm{T}} \varvec{x}_{m 3}=0 \end{aligned}$$
(A8)
$$\begin{aligned} \varvec{z}_{L}^{\textrm{T}} \varvec{o} c_{6}+\varvec{z}_{L}^{\textrm{T}} \varvec{n} s_{6}=0 \end{aligned}$$
(A9)

where \(\varvec{p}_{m 1}\) = \([p_x, p_y, -a_{1}]^\textrm{T}\), \(\varvec{x}_{m 1}\) = \([c_{1}, s_{1}, -1]^\textrm{T}\), \(\varvec{p}_{m 2}\) = \([1, a_{1}, -1]^\textrm{T}\), \(\varvec{x}_{m 2}\) = \([0, 1, p_z]^\textrm{T}\), \(\varvec{z}_{L}\) = \([c_{1}c_{23}, s_{1}c_{23}, -s_{23}]^\textrm{T}\).

Table 5 The twists of the 6R ball wrist manipulator

From the Eq. A8, the analytical formula of q\(_1\) is obtained

$$\begin{aligned} q_1=\arctan 2{(-p_x,p_y)}+\arctan 2{(k_1,0)} \end{aligned}$$
(A10)

where k\(_1\) = \(\pm 1\), which is the first ambiguous symbol, and \(\arctan \)2( , ) denotes the arctangent function.

Equations A6 and A7 are squared and summed to obtain the equality

$$\begin{aligned} a_{2}^{2}+2 c_{3} a_{2} a_{3}-2 s_{3} a_{2} a_{5}+a_{3}^{2}+a_{5}^{2}=\left( \varvec{p}_{m 1}^{\textrm{T}} \varvec{x}_{m 1}\right) ^{2}+\left( \varvec{p}_{m 2}^{\textrm{T}} \varvec{x}_{m 2}\right) ^{2} \end{aligned}$$
(A11)

and the analytical formula of q\(_{3}\) is

$$\begin{aligned} q_{3}= & {} \arctan _{2}\left( k_{2} \sqrt{a_{3}^{2}\!+\!a_{5}^{2}\!-\!C_{m 3}^{2}}, C_{m 3}\!\right) \!-\!\arctan _{2}\left( a_{5}, a_{3}\right) \nonumber \\ C_{m 3}= & {} \frac{\left( \varvec{p}_{m 1}^{\textrm{T}} \varvec{x}_{m 1}\right) ^{2}+\left( \varvec{p}_{m 2}^{\textrm{T}} \varvec{x}_{m 2}\right) ^{2}-a_{2}^{2}-a_{3}^{2}-a_{5}^{2}}{2 a_{2}} \end{aligned}$$
(A12)

where k\(_2\) = \(\pm 1\), which is the second ambiguous symbol.

Simultaneous Eqs. A6 and A7 can be obtained

$$\begin{aligned} \begin{array}{l}q_{2}=\arctan _{2}\big (h_{m 1} \varvec{p}_{m 2}^{\textrm{T}} \varvec{x}_{m 2}+h_{m 2} \varvec{p}_{m 1}^{\textrm{T}} \varvec{x}_{m 1}, h_{m 1} \varvec{p}_{m 1}^{\textrm{T}} \varvec{x}_{m 1}\\ \qquad \quad -h_{m 2} \varvec{p}_{m 2}^{\textrm{T}} \varvec{x}_{m 2}\big ) \\ h_{m 1}=a_{5} c_{3}+a_{3} s_{3} \\ h_{m 2}=a_{3} c_{3}-a_{5} s_{3}+a_{2} \end{array} \end{aligned}$$
(A13)

The solution of q\(_{6}\) can be obtained by putting q\(_{1}\), q\(_{2}\) and q\(_{3}\) into Eq. A9,

$$\begin{aligned} q_{6}=\arctan _{2}\left( k_{3}, 0\right) +\arctan _{2}\left( \varvec{z}_{L}^{\textrm{T}} \varvec{n}, \varvec{z}_{L}^{\textrm{T}} \varvec{o}\right) \end{aligned}$$
(A14)

where k\(_3\) = \(\pm 1\), which is the third ambiguous symbol.

There are the following constraints

$$\begin{aligned} \begin{array}{l}\varvec{h}_{n 3}^{\textrm{T}} \varvec{h}_{n 1} c_{4}+\varvec{h}_{n 3}^{\textrm{T}} \varvec{h}_{n 2} s_{4}=-1 \\ \left( \varvec{z}_{L}^{\textrm{T}} \varvec{o} s_{6}-\varvec{z}_{L}^{\textrm{T}} \varvec{n} c_{6}\right) c_{5}-\varvec{z}_{L}^{\textrm{T}} \varvec{a} s_{5}=1\end{array} \end{aligned}$$
(A15)

where \(\varvec{h}_{n 1}\) = [s\(_1\), c\(_1\), 0]\(^\textrm{T}\), \(\varvec{h}_{n 2}\) = [-c\(_1\)s\(_{23}\), -s\(_1\)s\(_{23}\), -c\(_{23}\)]\(^\textrm{T}\), \(\varvec{h}_{n 3}\) = \(\varvec{o}c_6 + \varvec{n}s_6\).

Therefore, the solution of \(q_4\) and \(q_5\) can be obtained

$$\begin{aligned} q_{4}=\arctan {_2}(0,-1)+\arctan {_2}\left( \varvec{h}_{n 2}^{\textrm{T}} \varvec{h}_{n 3}, \varvec{h}_{n 1}^{\textrm{T}} \varvec{h}_{n 3}\right) \end{aligned}$$
(A16)
$$\begin{aligned} q_{5}=\arctan {_2}(0,1)+\arctan {_2}\left( -\varvec{z}_{L}^{\textrm{T}} \varvec{a}, \varvec{z}_{L}^{\textrm{T}} \varvec{o} s_{6}-\varvec{z}_{L}^{\textrm{T}} \varvec{n} c_{6}\right) \end{aligned}$$
(A17)

1.3 A.3 Inverse Kinematics of UR-like Manipulator

Similar to the procedure shown in Appendix A.1, the twists of the UR-like robot are first established, as shown in Table 6.

Table 6 The twists of the UR-like manipulator

The initial pose matrix \(\varvec{g}_0\) is given in Eq. A18. The forward kinematic model of the manipulator can be obtained from Eq. A3.

$$\begin{aligned} \begin{aligned} \varvec{g}_{0} =\left[ \begin{array}{cccc} 0 &{} 1 &{} 0 &{} -a_2-a_3 \\ 0 &{} 1 &{} 0 &{} -a_4 \\ 0 &{} 0 &{} 1 &{} a_1-a_5 \\ 0 &{} 0 &{} 0 &{} 1\end{array}\right] \end{aligned} \end{aligned}$$
(A18)

By decoupling the forward kinematic we can obtain Eq. A19

$$\begin{aligned} \varvec{T}_t \varvec{g}_0{ }^{-1} e^{-q_6 \xi _6} e^{-q_5 \xi _5} \varvec{g}_1=e^{q_1 \xi _1} e^{q_2 \xi _2} e^{q_3 \xi _3} e^{q_4 \varepsilon _4} \varvec{g}_1 \end{aligned}$$
(A19)

where \(\varvec{g}_1=\varvec{g}_0\). We denote the left side of Eq. A19 as \(\varvec{T}_{\varvec{L}1}\) and the right side as \(\varvec{T}_{\varvec{R}1}\) and use the \(\varvec{T}_{(i, j)}\) to denote the element in row i and column j of the matrix T.

From \(\varvec{T}_{\varvec{L}1(1,4)}\) \(^2\) + \(\varvec{T}_{\varvec{L}1(2,4)}\) \(^2\) = \(\varvec{T}_{\varvec{R}1(1,4)}\) \(^2\) + \(\varvec{T}_{\varvec{R}1(2,4)}\) \(^2\), Eq. A20 can be obtained

$$\begin{aligned} a_2 c_2+a_3 c_{23}-a_5 s_{234}=k_1 \sqrt{p_x^2+p_y^2-a_4^2} \end{aligned}$$
(A20)

where \(k_1 = \pm 1\), which is the first ambiguous symbol.

Let \(k_1\sqrt{(p_x^2+p_y^2-a_4^2)}=A\). Substituting A into \(\varvec{T}_{\varvec{L}}\), the solution to \(q_1\) can be obtained from \(\varvec{T}_{\varvec{L}1(1,4)}\) = \(\varvec{T}_{\varvec{R}1(1,4)}\) and \(\varvec{T}_{\varvec{L}1(2,4)}\) = \(\varvec{T}_{\varvec{R}1(2,4)}\), as shown in Eq. A21.

$$\begin{aligned} q_1=\arctan {_2}\left( -p_y, p_x\right) +\arctan {_2}\left( A, d_4\right) \end{aligned}$$
(A21)

Transform Eqs. A19 into A22,

$$\begin{aligned} e^{-q_1 \hat{\xi }_1} \varvec{T} \varvec{T}_0^{-1} e^{-q_6 \hat{\xi }_6}=e^{q_2 \hat{\xi }_2} e^{q_3 \hat{\xi }_3} e^{q_4 \hat{\varepsilon }_4} e^{q_5 \hat{\xi }_5} \end{aligned}$$
(A22)

Denote Eq. A22 as \(\varvec{T}_{\varvec{L}2}=\varvec{T}_{\varvec{R}2}\). From \(\varvec{T}_{\varvec{L}2(2,3)}=\varvec{T}_{\varvec{R}2(2,3)}\), we can get \(q_5\)

$$\begin{aligned} q_5=\arctan {_2}(0,1)+\arctan {_2}\left( k_2 \sqrt{1-\left( o_y c_1-o_x s_1\right) ^2}, o_y c_1-o_x s_1\right) \end{aligned}$$
(A23)

where \(k_2 =\pm 1\), which is the second ambiguous symbol.

Similarly, by \(\varvec{T}_{\varvec{L}2(2,1)}=\varvec{T}_{\varvec{R}2(2,1)}\), \(q_6\) is obtained

$$\begin{aligned} q_6=\arctan {_2}(0,1)+\arctan {_2}\left( \frac{n_x s_1-n_y c_1}{s_5}, \frac{a_x s_1-a_y c_1}{s_5}\right) \end{aligned}$$
(A24)

The solution of \(q_{234}\) is obtained from \(\varvec{T}_{\varvec{L}1(3,1)}=\varvec{T}_{\varvec{R}1(3,1)}\) and \(\varvec{T}_{\varvec{L}1(3,3)}=\varvec{T}_{\varvec{R}1(3,3)}\)

$$\begin{aligned} q_{234}=\arctan {_2}\left( o_z s_5+c_5\left( n_z c_6-a_z s_6\right) , a_z c_6+n_z s_6\right) \end{aligned}$$
(A25)

Then, put \(q_{234}\) into Eq. A20 and combine \(\varvec{T}_{\varvec{L}1(3,4)}=\varvec{T}_{\varvec{R}1(3,4)}\), the solution of \(q_3\) is obtained.

$$\begin{aligned} \begin{aligned}&q_3=\arctan {_2}(1,0)+\arctan {_2}\left( k_3 \sqrt{1-c_3^2}, c_3\right) \\&c_3=\frac{\left( a_1-p_z-d_5 c_{234}\right) ^2+\left( A+a_5 s_{234}\right) ^2-a_2{ }^2-a_3^2}{2 a_2 a_3} \\&\end{aligned} \end{aligned}$$
(A26)

where \(k_3 = \pm 1\), which is the third ambiguous symbol.

By taking \(q_3\) into \(\varvec{T}_{\varvec{L}1(1,4)}=\varvec{T}_{\varvec{R}1(1,4)}\) and Eq. A18, we can obtain

$$\begin{aligned} \begin{aligned}&q_2=\arctan {_2}(M, N) \\&M=\frac{-\left( A+a_5 s_{234}\right) m-n\left( a_1-p_z-a_5 c_{234}\right) }{-n^2-m^2} \\&N=\frac{-\left( A+a_5 s_{234}\right) m+n\left( A+a_5 s_{234}\right) }{-n^2-m^2} \\&\end{aligned} \end{aligned}$$
(A27)

where \(n=a_3s_3\), \(m=a_2+a_3c_3\).

Finally,

$$\begin{aligned} q_4=q_{234}-q_2-q_3 \end{aligned}$$
(A28)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, G., Xu, M. et al. A Novel Method for Selecting Inverse Kinematic Solutions Based on Configuration Space Partition for 6R Noncuspidal Manipulators. J Intell Robot Syst 110, 7 (2024). https://doi.org/10.1007/s10846-023-02029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02029-4

Keywords

Navigation