Skip to main content
Log in

Holocene temperature variation recorded by branched glycerol dialkyl glycerol tetraethers in a loess-paleosol sequence from the north-eastern Tibetan Plateau

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Reconstructing Holocene temperature evolution is important for understanding present temperature variations and for predicting future climate change, in the context of global warming. The evolution of Holocene global temperature remains disputed, due to differences between proxy reconstructions and model simulations, a discrepancy known as the ‘Holocene temperature conundrum’. More reliable and quantitative terrestrial temperature records are needed to resolve the spatial heterogeneity of existing records. In this study, based on the analysis of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from a loess-paleosol sequence from the Ganjia Basin in the north-eastern Tibetan Plateau (NETP), we quantitatively reconstructed the mean annual air temperature (MAAT) over the past 12 ka. The MAAT reconstruction shows that the temperature remained low during the early Holocene (12–8 ka), followed by a rapid warming at around 8 ka. From 8 to 4 ka, the MAAT record reached its highest level, followed by a cooling trend from the late Holocene (4–0 ka). The variability of the reconstructed MAAT is consistent with trends of annual temperature records from the Tibetan Plateau (TP) during the Holocene. We attribute the relatively low temperatures during the early Holocene to the existence of ice sheets at high-latitude regions in the Northern Hemisphere and the weaker annual mean insolation at 35°N. During the mid to late Holocene, the long-term cooling trend in the annual temperature record was primarily driven by declining summer insolation. This study provides key geological evidence for clarifying Holocene temperature change in the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder J R, Hostetler S W (2015). Global climate simulations at 3000-year intervals for the last 21000 years with the GENMOM coupled atmosphere-ocean model. Clim Past, 11(3): 449–471

    Google Scholar 

  • An Z S, Wu G X, Li J P, Sun Y B, Liu Y M, Zhou W J, Cai Y J, Duan A, Li L, Mao J Y, Cheng H, Shi Z G, Tan L C, Yan H, Ao H, Chang H, Feng J (2015). Global monsoon dynamics and climate change. Annu Rev Earth Planet Sci, 43(1): 29–77

    CAS  ADS  Google Scholar 

  • An Z, Colman S M, Zhou W, Li X, Brown E T, Jull A J T, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep, 2(1): 619

    PubMed  PubMed Central  Google Scholar 

  • Baker J L, Lachniet M S, Chervyatsova O, Asmerom Y, Polyak V J (2017). Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat Geosci, 10(6): 430–435

    CAS  ADS  Google Scholar 

  • Beghin P, Charbit S, Dumas C, Kageyama M, Ritz C (2015). How might the North American ice sheet influence the northwestern Eurasian climate. Clim Past, 11(10): 1467–1490

    Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012). The state and fate of Himalayan glaciers. Science, 336(6079): 310–314

    CAS  PubMed  ADS  Google Scholar 

  • Bova S, Rosenthal Y, Liu Z, Godad S P, Yan M (2021). Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589(7843): 548–553

    CAS  PubMed  ADS  Google Scholar 

  • Cao M, Rueda G, Rivas-Ruiz P, Trapote M C, Henriksen M, Vegas-Vilarrubia T, Rosell-Melé A (2018). Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality. Org Geochem, 122: 98–114

    CAS  ADS  Google Scholar 

  • Carlson A E, LeGrande A N, Oppo D W, Came R E, Schmidt G A, Anslow F S, Licciardi J M, Obbink E A (2008). Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat Geosci, 1(9): 620–624

    CAS  ADS  Google Scholar 

  • Cartapanis O, Jonkers L, Moffa-Sanchez P, Jaccard S L, de Vernal A (2022). Complex spatio-temporal structure of the Holocene Thermal Maximum. Nat Commun, 13(1): 5662

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chen C H, Bai Y, Fang X M, Guo H C, Meng Q Q, Zhang W L, Zhou P C, Murodov A (2019). A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion. Geophys Res Lett, 46(14): 8375–8386

    ADS  Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27(3): 351–364

    ADS  Google Scholar 

  • Chen F H, Zhang J F, Liu J B, Cao X Y, Hou J Z, Zhu L P, Xu X K, Liu X J, Wang M D, Wu D, Huang L X, Zeng T, Zhang S, Huang W, Zhang X, Yang K (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review. Quat Sci Rev, 243: 106444

    Google Scholar 

  • Crampton-Flood E D, Tierney J E, Peterse F, Kirkels F M S A, Sinninghe Damste J S (2020). BayMBT: a Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochim Cosmochim Acta, 268: 142–159

    ADS  Google Scholar 

  • Dang X, Yang H, Naafs B D A, Pancost R D, Xie S (2016). Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36

    CAS  ADS  Google Scholar 

  • De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe DamstéDamsté J S S (2013). Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org Geochem, 54: 78–82

    CAS  ADS  Google Scholar 

  • De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damste J S (2014). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112

    CAS  ADS  Google Scholar 

  • De Jonge C, Radujković D, Sigurdsson B D, Weedon J T, Janssens I, Peterse F (2019). Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils. Org Geochem, 137: 103897

    CAS  Google Scholar 

  • Deng L H, Jia G D, Jin C F, Li S J (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17

    CAS  ADS  Google Scholar 

  • Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S (2015). Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 12(11): 3141–3151

    ADS  Google Scholar 

  • Dong Y J, Wu N Q, Li F J, Zhang D, Zhang Y T, Shen C M, Lu H Y (2022). The Holocene temperature conundrum answered by mollusk records from East Asia. Nature Communications, 13(1): 5153

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Duan Y W, Sun Q, Werne J P, Hou J Z, Yang H, Wang Q, Khormali F, Xia D S, Chu G Q, Chen F H (2022). General Holocene warming trend in arid Central Asia indicated by soil isoprenoid tetraethers. Global Planet Change, 215: 103879

    Google Scholar 

  • Dyke A S (2004). An outline of North American Deglaciation with emphasis on central and northern Canada. Dev Quat Res, 2: 373–424

    Google Scholar 

  • Feng X P, Zhao C, D’Andrea W J, Hou J Z, Yang X D, Xiao X Y, Shen J, Duan Y W, Chen F H (2022). Evidence for a Relatively Warm Mid-to Late Holocene on the southeastern Tibetan Plateau. Geophys Res Lett, 49(15): e2022GL098740

    ADS  Google Scholar 

  • Feng X P, Zhao C, D’Andrea W J, Liang J, Zhou A F, Shen J (2019). Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake. Earth Planet Sci Lett, 510: 26–36

    CAS  ADS  Google Scholar 

  • Han L, Li Y, Liu X, Yang H (2020). Paleoclimatic reconstruction and the response of carbonate minerals during the past 8000 years over the northeast Tibetan Plateau. Quat Int, 553: 94–103

    Google Scholar 

  • He Y, Hou J, Wang M, Li X, Liang J, Xie S, Jin Y (2020). Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co Since the Last Deglaciation. Front Earth Sci (Lausanne), 8: 574206

    Google Scholar 

  • Herzschuh U, Borkowski J, Schewe J, Mischke S, Tian F (2014). Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol, 402: 44–54

    Google Scholar 

  • Hou J Z, Huang Y S, Zhao J T, Liu Z H, Colman S, An Z S (2016). Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys Res Lett, 43(3): 1323–1330

    ADS  Google Scholar 

  • Hou J, Li C G, Lee S (2019). The temperature record of the Holocene: progress and controversies. Sci Bull (Beijing), 64(9): 565–566

    PubMed  ADS  Google Scholar 

  • Immerzeel W W, Lutz A F, Andrade M, Bahl A, Biemans H, Bolch T, Hyde S, Brumby S, Davies B J, Elmore A C, Emmer A, Feng M, Fernández A, Haritashya U, Kargel J S, Koppes M, Kraaijenbrink P D A, Kulkarni A V, Mayewski P A, Nepal S, Pacheco P, Painter T H, Pellicciotti F, Rajaram H, Rupper S, Sinisalo A, Shrestha A B, Viviroli D, Wada Y, Xiao C, Yao T, Baillie J E M (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790): 364–369

    CAS  PubMed  Google Scholar 

  • Immerzeel W W, van Beek L P, Bierkens M F (2010). Climate change will affect the Asian water towers. Science, 328(5984): 1382–1385

    CAS  PubMed  ADS  Google Scholar 

  • IPCC (2023). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32

  • Jacob T, Wahr J, Pfeffer W T, Swenson S (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514–518

    CAS  PubMed  ADS  Google Scholar 

  • Kaufman D S, Broadman E (2023). Revisiting the Holocene global temperature conundrum. Nature, 614(7948): 425–435

    CAS  PubMed  ADS  Google Scholar 

  • Kaufman D, McKay N, Routson C, Erb M, Davis B, Heiri O, Jaccard S, Tierney J, Dätwyler C, Axford Y, Brussel T, Cartapanis O, Chase B, Dawson A, de Vernal A, Engels S, Jonkers L, Marsicek J, Moffa-Sánchez P, Morrill C, Orsi A, Rehfeld K, Saunders K, Sommer P S, Thomas E, Tonello M, Tóth M, Vachula R, Andreev A, Bertrand S, Biskaborn B, Bringué M, Brooks S, Caniupán M, Chevalier M, Cwynar L, Emile-Geay J, Fegyveresi J, Feurdean A, Finsinger W, Fortin M C, Foster L, Fox M, Gajewski K, Grosjean M, Hausmann S, Heinrichs M, Holmes N, Ilyashuk B, Ilyashuk E, Juggins S, Khider D, Koinig K, Langdon P, Larocque-Tobler I, Li J, Lotter A, Luoto T, Mackay A, Magyari E, Malevich S, Mark B, Massaferro J, Montade V, Nazarova L, Novenko E, Pařil P, Pearson E, Peros M, Pienitz R, Płóciennik M, Porinchu D, Potito A, Rees A, Reinemann S, Roberts S, Rolland N, Salonen S, Self A, Seppä H, Shala S, St-Jacques J M, Stenni B, Syrykh L, Tarrats P, Taylor K, van den Bos V, Velle G, Wahl E, Walker I, Wilmshurst J, Zhang E, Zhilich S (2020). A global database of Holocene paleotemperature records. Sci Data, 7(1): 115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laepple T, Shakun J, He F, Marcott S (2022). Concerns of assuming linearity in the reconstruction of thermal maxima. Nature, 607(7920): E12–E14

    CAS  PubMed  ADS  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B (2004). A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428(1): 261–285

    ADS  Google Scholar 

  • Li G Q, Zhang H X, Liu X J, Yang H, Wang X Y, Zhang X J, Jonell T N, Zhang Y N, Huang X, Wang Z, Wang Y X, Yu L P, Xia D S (2020). Paleoclimatic changes and modulation of East Asian summer monsoon by high-latitude forcing over the last 130,000 years as revealed by independently dated loess-paleosol sequences on the NE Tibetan Plateau. Quat Sci Rev, 237: 106283

    Google Scholar 

  • Li Q, Sun Q, Xie M M, Ling Y, Zhu Z Y, Zhu Q Z, Zhan N, Chu G Q (2022). Temperature variations during the past 20 ka at Huguangyan Maar Lake in tropical China and dynamic link. ESS Open Archive, August 20, 2022

    Google Scholar 

  • Li X, Wang M, Zhang Y, Lei L, Hou J (2017). Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co. Quat Res, 87(3): 455–467

    CAS  Google Scholar 

  • Li Y, Morrill C (2015). A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation. Clim Dyn, 45(5–6): 1219–1234

    Google Scholar 

  • Liu Y, Zhang M, Liu Z, Xia Y, Huang Y, Peng Y, Zhu J (2018). A possible role of dust in resolving the Holocene temperature conundrum. Sci Rep, 8(1): 4434

    PubMed  PubMed Central  ADS  Google Scholar 

  • Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W, Elison Timm O (2014). The Holocene temperature conundrum. Proc Natl Acad Sci USA, 111(34): E3501–E3505

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lu W, Zhao X H, Feng X S, Xiang N B, Du Z L, Zhang W T (2022). Temporal and spatial response of Holocene temperature to solar activity. Quat Int, 613: 39–45

    Google Scholar 

  • Marcott S A, Shakun J D, Clark P U, Mix A C (2013). A reconstruction of regional and global temperature for the past 11300 years. Science, 339(6124): 1198–1201

    CAS  PubMed  ADS  Google Scholar 

  • Marsicek J, Shuman B N, Bartlein P J, Shafer S L, Brewer S (2018). Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554(7690): 92–96

    CAS  PubMed  ADS  Google Scholar 

  • McManus J F, Francois R, Gherardi J M, Keigwin L D, Brown-Leger S (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985): 834–837

    CAS  PubMed  ADS  Google Scholar 

  • Meyer H, Opel T, Laepple T, Dereviagin A Y, Hoffmann K, Werner M (2015). Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat Geosci, 8(2): 122–125

    CAS  ADS  Google Scholar 

  • Mjell T L, Ninnemann U S, Eldevik T, Kleiven H F (2015). Holocene multidecadal- to millennial-scale variations in Iceland-Scotland overflow and their relationship to climate. Paleoceanography, 30(5): 558–569

    ADS  Google Scholar 

  • Naafs B D A, Gallego-Sala A V, Inglis G N, Pancost R D (2017). Refining the global branched glycerol dialkyl glycerol tetraether (brGDGTs) soil temperature calibration. Org Geochem, 106: 48–56

    CAS  ADS  Google Scholar 

  • Neckel N, Kropáček J, Bolch T, Hochschild V (2014). Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICES at laser altimetry measurements. Environ Res Lett, 9(1): 014009

    ADS  Google Scholar 

  • Ning D L, Zhang N L, Shulmeister J, Chang J, Sun W W, Ni Z Y (2019). Holocene mean annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. Org Geochem, 133: 65–76

    CAS  ADS  Google Scholar 

  • Opitz S, Zhang C, Herzschuh U, Mischke S (2015). Climate variability on the south-eastern Tibetan Plateau since the Lateglacial based on a multiproxy approach from Lake Naleng–comparing pollen and non-pollen signals. Quat Sci Rev, 115: 112–122

    ADS  Google Scholar 

  • Osman M B, Tierney J E, Zhu J, Tardif R, Hakim G J, King J, Poulsen C J (2021). Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599(7884): 239–244

    CAS  PubMed  ADS  Google Scholar 

  • Pang H, Hou S, Zhang W, Wu S, Jenk T M, Schwikowski M, Jouzel J (2020). Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. J Geophys Res Atmos, 125(19): e2020JD032560

    ADS  Google Scholar 

  • Park H S, Kim S J, Stewart A L, Son S W, Seo K H (2019). Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci Adv, 5(12): eaax8203

    PubMed  PubMed Central  ADS  Google Scholar 

  • Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H B, Gu Z Y, Schouten S, Damsté J S S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301(1–2): 256–264

    CAS  ADS  Google Scholar 

  • Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229

    CAS  ADS  Google Scholar 

  • Qiu J (2008). China: the third pole. Nature, 454(7203): 393–396

    CAS  PubMed  ADS  Google Scholar 

  • Rao Z G, Shi F X, Li Y X, Huang C, Zhang X Z, Yang W, Liu L D, Zhang X P, Wu Y (2020). Long-term winter/summer warming trends during the Holocene revealed by αellulose δ18O/δ13C records from an alpine peat core from central Asia. Quat Sci Rev, 232:106217

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche D M, Goosse H, Fichefet T (2009). The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci, 2(6): 411–414

    CAS  ADS  Google Scholar 

  • Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem, 54: 19–61

    CAS  ADS  Google Scholar 

  • Shang X S, Jin Y P (2012). Characteristics of natural grassland vegetation types and their distribution patterns in Xiahe, Gannan. Prataculture & Animal Husbandry, 194(01): 39–40 (in Chinese)

    Google Scholar 

  • Sun W, Zhao S, Pei H, Yang H (2019). The coupled evolution of mid-to late Holocene temperature and moisture in the southeast Qaidam Basin. Chem Geol, 528: 119282

    CAS  Google Scholar 

  • Sun X H, Zhao C, Zhang C, Feng X P, Yan T L, Yang X D, Shen J (2021). Seasonality in Holocene temperature reconstructions in Southwestern China. Paleoceanogr Paleoclimatol, 36(1): e2020PA004025

    ADS  Google Scholar 

  • Sun Y B, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S (2012). Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 5(1): 46–49

    CAS  ADS  Google Scholar 

  • Thompson A J, Zhu J, Poulsen C J, Tierney J E, Skinner C B (2022). Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci Adv, 8(15): eabj6535

    PubMed  PubMed Central  Google Scholar 

  • Véquaud P, Thibault A, Derenne S, Anquetil C, Collin S, Contreras S, Nottingham A T, Sabatier P, Werne J P, Huguet A (2022). FROG: a global machine-learning temperature calibration for branched GDGTs in soils and peats. Geochim Cosmochim Acta, 318: 468–494

    ADS  Google Scholar 

  • Wang H S, Gao P, Yang R, Nie J S, Cao B, Zhou A F, Pan B T, Chen L, Peng T J (2022). Correlation between brGDGTs distribution and elevation from the eastern Qilian Shan. Front Earth Sci (Lausanne), 10: 844026

    Google Scholar 

  • Wang H Y, Liu W G (2021). Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau: a test of soil brGDGTs as a proxy for paleoelevation. Chem Geol, 566: 120079

    CAS  Google Scholar 

  • Wang H, An Z, Lu H, Zhao Z, Liu W (2020). Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence. Quat Sci Rev, 231: 106172

    Google Scholar 

  • Wang M D, Hou J Z, Duan Y W, Chen J H, Li X M, He Y, Lee S Y, Chen F H (2021). Internal feedbacks forced Middle Holocene cooling on the Qinghai-Tibetan Plateau. Boreas, 50(4): 1116–1130

    Google Scholar 

  • Wang M Y, Zheng Z, Man M L, Hu J F, Gao Q Z (2017). Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of southeast China. Chem Geol, 463: 94–102

    CAS  ADS  Google Scholar 

  • Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damste J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713

    CAS  ADS  Google Scholar 

  • Wu D, Chen X M, Lv F Y, Brenner M, Curtis J, Zhou A F, Chen J H, Abbott M, Yu J Q, Chen F H (2018). Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat Sci Rev, 193: 54–67

    ADS  Google Scholar 

  • Wu D, Zhang C B, Wang T, Liu L, Zhang X J, Yuan J Z, Yang S L, Chen F H (2021). East-west asymmetry in the distribution of rainfall in the Chinese Loess Plateau during the Holocene. Catena, 207: 105626

    CAS  Google Scholar 

  • Yan T L, Zhao C, Yan H, Shi G, Sun X S, Zhang C, Feng X P, Leng C C (2021). Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30°N on eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 570: 110364

    Google Scholar 

  • Yang H, Pancost R D, Dang X, Zhou X, Evershed R P, Xiao G Q, Tang C Y, Gao L, Guo Z T, Xie S C (2014). Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69

    CAS  ADS  Google Scholar 

  • Yao T D, Wu G J, Xu B Q, Wang W C, Gao J, An B S (2019). Asian water tower change and its impacts. Bull Chinese Academy Sci, 34(11): 1201–1209 (in Chinese)

    Google Scholar 

  • Zhang C B, Wu D, Chen X M, Yuan Z J, Chen F H (2022a). A preliminary study of the strata and age of ancient agricultural terraces in the Ganjia Basin, northeastern Tibetan Plateau. Acta Geogr Sin, 77(1): 66–78 (in Chinese)

    Google Scholar 

  • Zhang C, Zhao C, Yu S Y, Yang X D, Cheng J, Zhang X J, Xue B, Shen J, Chen F H (2022b). Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau. Earth Sci Rev, 226: 103927

    Google Scholar 

  • Zhang E L, Chang J, Cao Y M, Sun W W, Shulmeister J, Tang H Q, Langdon P G, Yang X D, Shen J (2017). Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau. Quat Sci Rev, 165: 1–12

    ADS  Google Scholar 

  • Zhang W C, Wu H B, Cheng J, Geng J Y, Li Q, Sun Y, Yu Y Y, Lu H Y, Guo Z T (2022c). Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nat Commun, 13(1): 5334

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhang X, Chen F (2021). Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature, 600(7887): E1–E3

    CAS  PubMed  ADS  Google Scholar 

  • Zhao B Y, Hu J F, Liu F H, Chen W, Chen W M (2021a). Variation of temperature in Lake Nanyi sediments from the lower Yangtze River region since the last 12.0 ka B. P. Quat Sci, 41(4): 1044–1055 (in Chinese)

    CAS  Google Scholar 

  • Zhao C, Rohling E J, Liu Z, Yang X, Zhang E, Cheng J, Liu Z, An Z, Yang X, Feng X, Sun X, Zhang C, Yan T, Long H, Yan H, Yu Z, Liu W, Yu S Y, Shen J (2021b). Possible obliquity-forced warmth in southern Asia during the last glacial stage. Sci Bull (Beijing), 66(11): 1136–1145

    PubMed  ADS  Google Scholar 

  • Zhao H, Huang C C, Wang H Y, Liu W G, Qiang X K, Xu X W, Zheng Z K, Hu Y, Zhou Q, Zhang Y Z, Guo Y Q (2018). Mid-late Holocene temperature and precipitation variations in the Guanting Basin, upper reaches of the Yellow River. Quat Int, 490: 74–81

    Google Scholar 

  • Zhao J J, Tsai V C, Huang Y S (2022). A nonlinear model for resolving the temperature bias of branched glycerol dialkyl glycerol tetraether (brGDGTs) temperature proxies. Geochim Cosmochim Acta, 327: 158–169

    CAS  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42171150 and 42130502) and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (No. 2019QZKK0601). We sincerely thank Dr. Yanwu Duan for his constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Wu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wu, D., Wang, T. et al. Holocene temperature variation recorded by branched glycerol dialkyl glycerol tetraethers in a loess-paleosol sequence from the north-eastern Tibetan Plateau. Front. Earth Sci. 17, 1012–1025 (2023). https://doi.org/10.1007/s11707-023-1094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-023-1094-6

Keywords

Navigation