Skip to main content
Log in

Changes in the Structure of Potato Virus A Virions after Limited in situ Proteolysis According to Tritium Labeling Data and Computer Simulation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Coat proteins (CP) of the potato virus A virions (PVA) contain partially disordered N-terminal domains, which are necessary for performing vital functions of the virus. Comparative analysis of the structures of coat proteins (CPs) in the intact PVA virions and in the virus particles lacking N-terminal 32 amino acids (PVAΔ32) was carried out in this work based on the tritium planigraphy data. Using atomic-resolution structure of the potato virus Y potyvirus (PVY) protein, which is a homolog of the CP PVA, the available CP surfaces in the PVY virion were calculated and the areas of intersubunit/interhelix contacts were determined. For this purpose, the approach of Lee and Richards [Lee, B., and Richards, F. M. (1971) J. Mol. Biol., 55, 379-400] was used. Comparison of incorporation profiles of the tritium label in the intact and trypsin-degraded PVA∆32 revealed position of the ΔN-peptide shielding the surface domain (a.a. 66-73, 141-146) and the interhelix zone (a.a. 161-175) of the PVA CP. Presence of the channels/cavities was found in the virion, which turned out to be partially permeable to tritium atoms. Upon removal of the ∆N-peptide, decrease in the label incorporation within the virion (a.a. 184-200) was also observed, indicating possible structural transition leading to the virion compactization. Based on the obtained data, we can conclude that part of the surface ∆N-peptide is inserted between the coils of the virion helix thus increasing the helix pitch and providing greater flexibility of the virion, which is important for intercellular transport of the viruses in the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

CP:

coat proteins

EM:

electron microscopy

PVA:

potato virus A

PVA∆32:

PVA virion lacking 32 amino acids at N-terminus

PVY:

potato virus Y

References

  1. Ksenofontov, A. L., Paalme, V., Arutyunyan, A. M., Semenyuk, P. I., Fedorova, N. V., Rumvolt, R., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2013) Partially disordered structure in intravirus coat protein of potyvirus potato virus A, PLoS One, 8, e67830, https://doi.org/10.1371/journal.pone.0067830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charon, J., Theil, S., Nicaise, V., and Michon, T. (2016) Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation, Mol. BioSystems, 12, 634-652, https://doi.org/10.1039/c5mb00677e.

    Article  CAS  Google Scholar 

  3. Baratova, L. A., Efimov, A. V., Dobrov, E. N., Fedorova, N. V., Hunt, R., Badun, G. A., Ksenofontov, A. L., Torrance, L., and Jarvekulg, L. (2001) In situ spatial organization of Potato virus A coat protein subunits as assessed by tritium bombardment, J. Virol., 75, 9696-9702, https://doi.org/10.1128/JVI.75.20.9696-9702.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kezar, A., Kavcic, L., Polak, M., Novacek, J., Gutierrez-Aguirre, I., Znidaric, M. T., Coll, A., Stare, K., Gruden, K., Ravnikar, M., Pahovnik, D., Zagar, E., Merzel, F., Anderluh, G., and Podobnik, M. (2019) Structural basis for the multitasking nature of the potato virus Y coat protein, Sci. Adv., 5, eaaw3808, https://doi.org/10.1126/sciadv.aaw3808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shtykova, E. V., Petoukhov, M. V., Fedorova, N. V., Arutyunyan, A. M., Skurat, E. V., Kordyukova, L. V., Moiseenko, A. V., and Ksenofontov, A. L. (2021) The structure of the potato virus A particles elucidated by small angle X-ray scattering and complementary techniques, Biochemistry (Moscow), 86, 230-240, https://doi.org/10.1134/S0006297921020115.

    Article  CAS  PubMed  Google Scholar 

  6. Zamora, M., Mendez-Lopez, E., Agirrezabala, X., Cuesta, R., Lavin, J. L., Sanchez-Pina, M. A., Aranda, M. A., and Valle, M. (2017) Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses, Sci. Adv., 3, eaao2182, https://doi.org/10.1126/sciadv.aao2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuesta, R., Yuste-Calvo, C., Gil-Carton, D., Sanchez, F., Ponz, F., and Valle, M. (2019) Structure of Turnip mosaic virus and its viral-like particles, Sci. Rep., 9, 15396, https://doi.org/10.1038/s41598-019-51823-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agirrezabala, X., Mendez-Lopez, E., Lasso, G., Sanchez-Pina, M. A., Aranda, M., and Valle, M. (2015) The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses, eLife, 4, e11795, https://doi.org/10.7554/eLife.11795.

    Article  PubMed  PubMed Central  Google Scholar 

  9. DiMaio, F., Chen, C. C., Yu, X., Frenz, B., Hsu, Y. H., Lin, N. S., and Egelman, E. H. (2015) The molecular basis for flexibility in the flexible filamentous plant viruses, Nat. Struct. Mol. Biol., 22, 642-644, https://doi.org/10.1038/nsmb.3054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tatineni, S., Kovacs, F., and French, R. (2014) Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants, J. Virol., 88, 1366-1380, https://doi.org/10.1128/JVI.02737-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jarveculg, L., Baratova, L. , Dobrov, E., Badun, G., Hunt, R., Andreeva, E. ,Rabenstein, F., Efimov, A. V. (2000) Study of the spatial structure of potato virus. A coat protein subunits and particles using tritium planigraphy, Beiträge Züchtungsfors., 6, 61-66.

    Google Scholar 

  12. Shukla, D. D., Thomas, J. E., McKern, N. M., Tracy, S. L., and Ward, C. W. (1988) Coat protein of potyviruses. 4. Comparison of biological properties, serological relationships, and coat protein amino acid sequences of four strains of potato virus Y, Arch. Virol., 102, 207-219, https://doi.org/10.1007/BF01310826.

    Article  CAS  PubMed  Google Scholar 

  13. Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., and Pirone, T. P. (1995) Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids, J. Gen. Virol., 76, 265-270, https://doi.org/10.1099/0022-1317-76-2-265.

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, B. D., and Robinson, D. J. (1988) Molecular variation in vector-borne plant viruses: epidemiological significance, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 321, 447-462, https://doi.org/10.1098/rstb.1988.0102.

    Article  CAS  Google Scholar 

  15. Goldanskii, V. I., Kashirin, I. A., Shishkov, A. V., Baratova, L. A., and Grebenshchikov, N. I. (1988) The use of thermally activated tritium atoms for structural-biological investigations: the topography of the TMV protein-accessible surface of the virus, J. Mol. Biol., 201, 567-574, https://doi.org/10.1016/0022-2836(88)90638-9.

    Article  CAS  PubMed  Google Scholar 

  16. Baratova, L. A., Bogacheva, E. N., Goldansky, V. I., Kolb, V. A., Spirin, A. S., and Shishkov, A. V. (1999) Tritium planigraphy of biological macromolecules [in Russian], Nauka, Moscow.

  17. Badun, G. A., and Fedoseev, V. M. (2001) Permeability of lipid membranes for atomic tritium or atom “slipping” effect and its role in tritium planigraphy, Radiochemistry, 43, 301-305, https://doi.org/10.1023/A:1012872927896.

    Article  CAS  Google Scholar 

  18. Badun, G. A., and Chernysheva, M. G. (2023) Tritium thermal activation method. Features of application, modern achievements, and further development prospects, Radiochemistry, 65, 185-197, https://doi.org/10.1134/S1066362223020054.

    Article  CAS  Google Scholar 

  19. Agafonov, D. E., Kolb, V. A., and Spirin, A. S. (1997) Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique, Proc. Natl. Acad. Sci. USA, 94, 12892-12897, https://doi.org/10.1073/pnas.94.24.12892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobrov, E. N., Badun, G. A., Lukashina, E. V., Fedorova, N. V., Ksenofontov, A. L., Fedoseev, V. M., and Baratova, L. A. (2003) Tritium planigraphy comparative structural study of tobacco mosaic virus and its mutant with altered host specificity, Eur. J. Biochem., 270, 3300-3308, https://doi.org/10.1046/j.1432-1033.2003.03680.x.

    Article  CAS  PubMed  Google Scholar 

  21. Baratova, L. A., Grebenshchikov, N. I., Dobrov, E. N., Gedrovich, A. V., Kashirin, I. A., Shishkov, A. V., Efimov, A. V., Jarvekulg, L., Radavsky, Y. L., and Saarma, M. (1992) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building, Virology, 188, 175-180, https://doi.org/10.1016/0042-6822(92)90747-d.

    Article  CAS  PubMed  Google Scholar 

  22. Shishkov, A. V., Goldanskii, V. I., Baratova, L. A., Fedorova, N. V., Ksenofontov, A. L., Zhirnov, O. P., and Galkin, A. V. (1999) The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment, Proc. Natl. Acad. Sci. USA, 96, 7827-7830, https://doi.org/10.1073/pnas.96.14.7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ksenofontov, A. L., Kozlovskii, V. S., Kordiukova, L. V., Radiukhin, V. A., Timofeeva, A. V., and Dobrov, E. N. (2006) Determination of concentration and aggregate size in influenza virus preparations using the true UV-absorption spectra [in Russian], Mol. Biol., 40, 172-179.

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  25. Goodman, R. M. (1975) Reconstitution of potato virus X in vitro. I. Properties of the dissociated protein structural subunits, Virology, 68, 287-298, https://doi.org/10.1016/0042-6822(75)90272-x.

    Article  CAS  PubMed  Google Scholar 

  26. Tsugita, A., and Scheffler, J. J. (1982) A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid, Eur. J. Biochem., 124, 585-588, https://doi.org/10.1111/j.1432-1033.1982.tb06634.x.

    Article  CAS  PubMed  Google Scholar 

  27. Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L. A., and Bunik, V. I. (2016) Quantification of rat brain amino acids: Analysis of the data consistency, Curr. Anal. Chem., 12, 349-356, https://doi.org/10.2174/1573411011666151006220356.

    Article  CAS  Google Scholar 

  28. Lukashina, E., Ksenofontov, A., Fedorova, N., Badun, G., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. (2012) Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity, Mol. Plant Pathol., 13, 38-45, https://doi.org/10.1111/j.1364-3703.2011.00725.x.

    Article  CAS  PubMed  Google Scholar 

  29. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19-25, https://doi.org/10.1016/j.softx.2015.06.001.

    Article  Google Scholar 

  30. Gedrovich, A. V., and Badun, G. A. (1992) Study of the spatial structure of globular proteins by tritium planigraphy. Short peptides as a model of a fully extended polypeptide chain [in Russian], Mol. Biol., 26, 558-564.

    CAS  Google Scholar 

  31. Lee, B., and Richards, F. M. (1971) The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol., 55, 379-400, https://doi.org/10.1016/0022-2836(71)90324-x.

    Article  CAS  PubMed  Google Scholar 

  32. Shukla, D. D., Tribbick, G., Mason, T. J., Hewish, D. R., Geysen, H. M., and Ward, C. W. (1989) Localization of virus-specific and group-specific epitopes of plant potyviruses by systematic immunochemical analysis of overlapping peptide fragments, Proc. Natl. Acad. Sci. USA, 86, 8192-8196, https://doi.org/10.1073/pnas.86.21.8192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei, T., Huang, T. S., McNeil, J., Laliberte, J. F., Hong, J., Nelson, R. S., and Wang, A. (2010) Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication, J. Virol., 84, 799-809, https://doi.org/10.1128/JVI.01824-09.

    Article  CAS  PubMed  Google Scholar 

  34. Ksenofontov, A. L., Parshina, E. Y., Fedorova, N. V., Arutyunyan, A. M., Rumvolt, R., Paalme, V., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2016) Heating-induced transition of Potyvirus Potato Virus A coat protein into beta-structure, J. Biomol. Struct. Dynamics, 34, 250-258, https://doi.org/10.1080/07391102.2015.1022604.

    Article  CAS  Google Scholar 

  35. Ksenofontov, A. L., Dobrov, E. N., Fedorova, N. V., Arutyunyan, A. M., Golanikov, A. E., Jarvekulg, L., and Shtykova, E. V. (2018) Structure of potato virus A coat protein particles and their dissociation [in Russian], Mol. Biol., 52, 1055-1065, https://doi.org/10.1134/S0026898418060101.

    Article  CAS  Google Scholar 

  36. Kordyukova, L. V., Ksenofontov, A. L., Badun, G. A., Baratova, L. A., and Shishkov, A. V. (2001) Studying liposomes by tritium bombardment, Biosci. Rep., 21, 711-718, https://doi.org/10.1023/a:1015572321508.

    Article  CAS  PubMed  Google Scholar 

  37. Shishkov, A. V., Ksenofontov, A. L., Bogacheva, E. N., Kordyukova, L. V., Badun, G. A., Alekseevsky, A. V., Tsetlin, V. I., and Baratova, L. A. (2002) Studying the spatial organization of membrane proteins by means of tritium stratigraphy: bacteriorhodopsin in purple membrane, Bioelectrochemistry, 56, 147-149, https://doi.org/10.1016/s1567-5394(02)00018-x.

    Article  CAS  PubMed  Google Scholar 

  38. Chakravarty, A., Reddy, V. S., and Rao, A. L. N. (2020) Unravelling the stability and capsid dynamics of the three virions of brome mosaic virus assembled autonomously in vivo, J. Virol., 94, https://doi.org/10.1128/JVI.01794-19.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clare, D. K., Pechnikova, E. V., Skurat, E. V., Makarov, V. V., Sokolova, O. S., Solovyev, A. G., and Orlova, E. V. (2015) Novel inter-subunit contacts in barley stripe mosaic virus revealed by cryo-electron microscopy, Structure, 23, 1815-1826, https://doi.org/10.1016/j.str.2015.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V., and Atabekov, J. G. (2003) Linear remodeling of helical virus by movement protein binding, J. Mol. Biol., 333, 565-572, https://doi.org/10.1016/j.jmb.2003.08.058.

    Article  CAS  PubMed  Google Scholar 

  41. Lukashina, E., Badun, G., Fedorova, N., Ksenofontov, A., Nemykh, M., Serebryakova, M., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L., and Dobrov, E. (2009) Tritium planigraphy study of structural alterations in the coat protein of Potato virus X induced by binding of its triple gene block 1 protein to virions, FEBS J., 276, 7006-7015, https://doi.org/10.1111/j.1742-4658.2009.07408.x.

    Article  CAS  PubMed  Google Scholar 

  42. Steele, J. F. C., Peyret, H., Saunders, K., Castells-Graells, R., Marsian, J., Meshcheriakova, Y., and Lomonossoff, G. P. (2017) Synthetic plant virology for nanobiotechnology and nanomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1447, https://doi.org/10.1002/wnan.1447.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. E. V. Shtykova (Shubnikov Institute of Crystallography) for fruitful discussions.

Funding

This work was financially supported in part by the Russian Foundation for Basic Research (grant 18-04-00525a).

Author information

Authors and Affiliations

Authors

Contributions

A.L.K. and L.A.B. concept of the study and supervision; A.L.K., G.A.B., N.V.F., and P.I.S. conducting experiments, discussion of the results of the study; A.L.K., L.A.B., and G.A.B. writing and editing of the manuscript.

Corresponding author

Correspondence to Alexander L. Ksenofontov.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.L., Baratova, L.A., Semenyuk, P.I. et al. Changes in the Structure of Potato Virus A Virions after Limited in situ Proteolysis According to Tritium Labeling Data and Computer Simulation. Biochemistry Moscow 88, 2146–2156 (2023). https://doi.org/10.1134/S0006297923120167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120167

Keywords

Navigation