Skip to main content
Log in

Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes – unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfxaurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

ΔA:

absorbance changes (light-dark)

BChl:

bacteriochlorophyll

Cb. :

Chlorobium

Cfx. :

Chloroflexus

Chl:

chlorophyll

Rba. :

Rhodobacter

References

  1. Clayton, R. (1980) Photosynthesis: physical mechanisms and chemical patterns, Cambridge University Press, USA.

  2. Mirkovic. T., Ostroumov, E., Anna, J., van Grondelle, R., Govindjee, and Scholes, G. (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms, Chem. Rev., 117, 249-293, https://doi.org/10.1021/acs.chemrev.6b00002.

    Article  CAS  PubMed  Google Scholar 

  3. Frigaard, N.-U., and Bryant, D. (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria, in Complex intracellular structures in prokaryotes. Microbiology monographs (Shively, J. M., ed) vol. 2, Springer, Berlin, pp. 79-114, https://doi.org/10.1007/7171_021.

  4. Krasnovsky, A., and Bystrova, M. (1980) Self-assembly of chlorophyll aggregated structures, BioSystems, 12, 181-194, https://doi.org/10.1016/0303-2647(80)90016-7.

    Article  CAS  PubMed  Google Scholar 

  5. Smith, K., Kehres, L., and Fajer, J. (1983) Aggregation of bacteriochlorophylls c, d or e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria, J. Am. Chem. Soc., 105, 1387-1389, https://doi.org/10.1021/ja00343a062.

    Article  CAS  Google Scholar 

  6. Van Dorssen, R. J., Vasmel, H., and Amesz, J. (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome, Photosynth. Res., 9, 33-45, https://doi.org/10.1007/BF00029729.

    Article  CAS  PubMed  Google Scholar 

  7. Fetisova, Z., Freiberg, A., and Timpmann, K. (1988) Long-range molecular order as an efficient strategy for light harvesting in photosynthesis, Nature (London), 334, 633-634, https://doi.org/10.1038/334633a0.

    Article  CAS  Google Scholar 

  8. Fetisova, Z., and Mauring, K. (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning, FEBS Lett., 307, 371-374, https://doi.org/10.1016/0014-5793(92)80715-S.

    Article  CAS  PubMed  Google Scholar 

  9. Fetisova, Z., and Mauring, K. (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola, FEBS Lett., 323, 159-162, https://doi.org/10.1016/0014-5793(93)81470-K.

    Article  CAS  PubMed  Google Scholar 

  10. Fetisova, Z., Mauring, K., and Taisova, A. (1994) Strongly exciton coupled BChl e chromophore system in chlorosomal antenna of intact cells of green bacterium Chlorobium phaeovibrioides: A spectral hole burning study, Photosynth. Res., 41, 205-210, https://doi.org/10.1007/BF02184161.

    Article  CAS  PubMed  Google Scholar 

  11. Fetisova, Z., Freiberg, A., Mauring, K., Novoderezhkin, V., Taisova, A., and Timpmann, K. (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies, Biophys. J., 71, 995-1010, https://doi.org/10.1016/S0006-3495(96)79301-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prokhorenko, V. I., Steensgaard, D. B., and Holzwarth, A. R. (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum, Biophys. J., 79, 2105-2120, https://doi.org/10.1016/S0006-3495(00)76458-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mauring, K., Novoderezhkin, V., Taisova, A., and Fetisova, Z. (1999) Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy, FEBS Lett., 456, 239-242, https://doi.org/10.1016/S0014-5793(99)00953-9.

    Article  CAS  PubMed  Google Scholar 

  14. Martiskainen, J., Linnanto, J., Kananavičius, R., Lehtovuori, V., and Korppi-Tommola, J. (2009) Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus, Chem. Phys. Lett., 477, 216-220, https://doi.org/10.1016/j.cplett.2009.06.080.

    Article  CAS  Google Scholar 

  15. Martiskainen, J., Linnanto, J., Aumanen, V., Myllyperkiö, P., and Korppi-Tommola, J. (2012) Excitation energy transfer in isolated chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii, Photochem. Photobiol., 88, 675-683, https://doi.org/10.1111/j.1751-1097.2012.01098.x.

    Article  CAS  PubMed  Google Scholar 

  16. Linnanto, J. V., and Korppi-Tommola, J. E. I. (2012) Exciton description of excitation energy transfer in the photosynthetic units of green sulfur bacteria and filamentous anoxygenic phototrophs, J. Phys. Chem. B, 117, 11144-11161, https://doi.org/10.1021/jp4011394.

    Article  CAS  Google Scholar 

  17. Staehelin, L., Golecki, J., Fuller, R., and Drews, G. (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol., 119, 269-277, https://doi.org/10.1007/BF00405406.

    Article  Google Scholar 

  18. Sprague, S., Staehelin, L., DiBartolomeis, M., and Fuller, R. (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus, J. Bacteriol., 147, 1021-1031, https://doi.org/10.1128/jb.147.3.1021-1031.1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Psencik, J., Ikonen, T. P., Laurinmaki, P., Merckel, M. C., Butcher, S. J., Serimaa, R. E., and Tuma, R. (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria, Biophys. J., 87, 1165-1172, https://doi.org/10.1529/biophysj.104.040956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Günther, L., Jendrny, M., Bloemsma, E., Tank, M., Oostergetel, G., Bryant, D., Knoester, J., and Köhler, J. (2016) Structure of light-harvesting aggregates in individual chlorosomes, J. Phys. Chem. B, 120, 5367-5376, https://doi.org/10.1021/acs.jpcb.6b03718.

    Article  CAS  PubMed  Google Scholar 

  21. Sawaya, N., Huh, J., Fujita, T., Saikin, S., and Aspuru-Guzik, A. (2015) Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model, Nano Lett., 15, 1722-1729, https://doi.org/10.1021/nl504399d.

    Article  CAS  PubMed  Google Scholar 

  22. Fujita, T., Huh, J., Saikin, S., Brookes, J., and Aspuru-Guzik, A. (2014) Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria, Photosynth. Res., 120, 273-289, https://doi.org/10.1007/s11120-014-9978-7.

    Article  CAS  PubMed  Google Scholar 

  23. Yakovlev, A. G., Taisova, A. S., and Fetisova, Z. G. (2021) Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer, Biochim. Biophys. Acta Bioenergetics, 1862, 148396, https://doi.org/10.1016/j.bbabio.2021.148396.

    Article  CAS  PubMed  Google Scholar 

  24. Savikhin, S., Zhu, Y., Blankenship, R. E., and Struve, W. S. (1996) Intraband energy transfers in the BChl c antenna of chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus, J. Phys. Chem., 100, 17978-17980, https://doi.org/10.1021/jp961752b.

    Article  CAS  Google Scholar 

  25. Savikhin, S., Zhu, Y., Lin, S., Blankenship, R. E., and Struve, W. S. (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus, J. Phys. Chem., 98, 10322-10334, https://doi.org/10.1021/j100091a056.

    Article  CAS  Google Scholar 

  26. Cherepy, N. J., Du Mei, Holzwarth, A. R., and Mathies, R. A. (1996) Near-infrared resonance Raman spectra of chlorosomes: probing nuclear coupling in electronic energy transfer, J. Phys. Chem., 100, 4662-4671, https://doi.org/10.1021/jp952992e.

    Article  CAS  Google Scholar 

  27. Klevanik, A. V. (2001) Low frequency vibrations of bacteriochlorophyll, Optics Spectroscopy, 90, 55-66, https://doi.org/10.1134/1.1343547.

    Article  CAS  Google Scholar 

  28. Yakovlev, A. G., Taisova, A. S., Shuvalov, V. A., and Fetisova, Z. G. (2018) Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach, Biophys. Chem., 240, 1-8, https://doi.org/10.1016/j.bpc.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  29. Pierson, B., and Castenholz, R. (1974) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium, Arch. Microbiol., 100, 283-305, https://doi.org/10.1007/BF00446324.

    Article  CAS  Google Scholar 

  30. Taisova, A. S., Keppen, O. I., Lukashev, E. P., Arutyunyan, A. M., and Fetisova, Z. G. (2002) Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides, Photosynth. Res., 74, 73-85, https://doi.org/10.1023/A:1020805525800.

    Article  CAS  PubMed  Google Scholar 

  31. Trubetzkov, D. I., and Rojnev, A. G. (2001) Linear Vibrations and Waves [in Russian], Fizmatlit, Moscow.

  32. Yakovlev, A. G., Taisova, A. S., and Fetisova, Z. G. (2020) Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus, Photosynth. Res., 146, 95-108, https://doi.org/10.1007/s11120-019-00707-9.

    Article  CAS  PubMed  Google Scholar 

  33. Yakovlev, A., Taisova, A., Arutyunyan, A., Shuvalov, V., and Fetisova, Z. (2017) Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus, Photosynth. Res., 133, 343-356, https://doi.org/10.1007/s11120-017-0374-y.

    Article  CAS  PubMed  Google Scholar 

  34. Glinka, N. L. (1975) General Chemistry [in Russian], Chemistry, Leningrad.

  35. Savikhin, S., van Noort, P. I., Zhu, Y., Lin, S., Blankenship, R. E., and Struve, W. S. (1995) Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum, Chem. Phys., 194, 245-258, https://doi.org/10.1016/0301-0104(95)00019-K.

    Article  CAS  PubMed  Google Scholar 

  36. Yakovlev, A. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2002) Nuclear wavepacket motion between P* and P+BA potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers at 90 K. Electron transfer pathway, Biochemistry, 41, 14019-14027, https://doi.org/10.1021/bi020250n.

    Article  CAS  PubMed  Google Scholar 

  37. Meneghin, E., Leonardo, C., Volpato, A., Bolzonello, L., and Collini, E. (2017) Mechanistic insight into internal conversion process within Q-bands of chlorophyll a, Sci. Rep., 7, 11389, https://doi.org/10.1038/s41598-017-11621-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lutz, M. (1977) Antenna chlorophyll in photosynthetic membranes. A study by resonance Raman spectroscopy, Biochim. Biophys. Acta, 460, 408-430, https://doi.org/10.1016/0005-2728(77)90081-0.

    Article  CAS  PubMed  Google Scholar 

  39. Novoderezhkin, V. I., Taisova, A. S., and Fetisova, Z. G. (2001) Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra, Chem. Phys. Lett., 335, 234-240, https://doi.org/10.1016/S0009-2614(01)00045-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their deep gratitude to the late Professor V. A. Shuvalov for general support and constant attention to the work.

Funding

The study was financially supported by the State Budget Project no. AAAA-A17-117120540070-0 (“Photobiophysics of Solar Energy Conversion in Living Systems”).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the work.

Corresponding author

Correspondence to Andrei G. Yakovlev.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not contain description of research involving human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.G., Taisova, A.S. & Fetisova, Z.G. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria. Biochemistry Moscow 88, 2084–2093 (2023). https://doi.org/10.1134/S0006297923120118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120118

Keywords

Navigation