Skip to main content
Log in

Nocistatin and Products of Its Proteolysis Are Dual Modulators of Type 3 Acid-Sensing Ion Channels (ASIC3) with Algesic and Analgesic Properties

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel’s response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

ASIC:

acid-sensing ion channels

CNS:

central nervous system

GMQ:

2-guanidine-4-methylquinazoline

NS:

nocistatin

PNS:

peripheral nervous system

rNS:

rat nocistatin

SSD:

steady-state desensitization

References

  1. Chu, X.-P., and Xiong, Z.-G. (2012) Physiological and pathological functions of acid-sensing ion channels in the central nervous system, Curr. Drug Targets, 13, 263-271, https://doi.org/10.2174/138945012799201685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carattino, M. D., and Montalbetti, N. (2020) Acid-sensing ion channels in sensory signalling, Am. J. Physiol. Renal Physiol., 318, F531-F543, https://doi.org/10.1152/ajprenal.00546.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wemmie, J. A., Price, M. P., and Welsh, M. J. (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities, Trends Neurosci., 29, 578-586, https://doi.org/10.1016/j.tins.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  4. Deval, E., and Lingueglia, E. (2015) Acid-sensing ion channels and nociception in the peripheral and central nervous systems, Neuropharmacology, 94, 49-57, https://doi.org/10.1016/j.neuropharm.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  5. Schuhmacher, L.-N., and Smith, E. S. J. (2016) Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat, Mol. Brain, 9, 97, https://doi.org/10.1186/s13041-016-0279-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S., and Kellenberger, S. (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR review 19, Br. J. Pharmacol., 173, 2671-2701, https://doi.org/10.1111/bph.13533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osmakov, D. I., Khasanov, T. A., Andreev, Y. A., Lyukmanova, E. N., and Kozlov, S. A. (2020) Animal, herb, and microbial toxins for structural and pharmacological study of acid-sensing ion channels, Front. Pharmacol., 11, 991, https://doi.org/10.3389/fphar.2020.00991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salinas, M., Lazdunski, M., and Lingueglia, E. (2009) Structural elements for the generation of sustained currents by the acid pain sensor ASIC3, J. Biol. Chem., 284, 31851-31859, https://doi.org/10.1074/jbc.M109.043984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deval, E., Noël, J., Lay, N., Alloui, A., Diochot, S., et al. (2008) ASIC3, a sensor of acidic and primary inflammatory pain, EMBO J., 27, 3047-3055, https://doi.org/10.1038/emboj.2008.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yagi, J., Wenk, H. N., Naves, L. A., and McCleskey, E. W. (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia, Circ. Res., 99, 501-519, https://doi.org/10.1161/01.RES.0000238388.79295.4c.

    Article  CAS  PubMed  Google Scholar 

  11. Dulai, J. S., Smith, E. S. J., and Rahman, T. (2021) Acid-sensing ion channel 3: an analgesic target, Channels, 15, 94-127, https://doi.org/10.1080/19336950.2020.1852831.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gründer, S., and Pusch, M. (2015) Biophysical properties of acid-sensing ion channels (ASICs), Neuropharmacology, 94, 9-18, https://doi.org/10.1016/j.neuropharm.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  13. Bohlen, C. J., Chesler, A. T., Sharif-Naeini, R., Medzihradszky, K. F., Zhou, S., et al. (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain, Nature, 479, 410-414, https://doi.org/10.1038/nature10607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Y., Chen, Z., Li, W.-G., Cao, H., Feng, E.-G., et al. (2010) A nonproton ligand sensor in the acid-sensing ion channel, Neuron, 68, 61-72, https://doi.org/10.1016/j.neuron.2010.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. Osmakov, D. I., Koshelev, S. G., Andreev, Y. A., Dubinnyi, M. A., Kublitski, V. S., et al. (2018) Proton-independent activation of acid-sensing ion channel 3 by an alkaloid, lindoldhamine, from Laurus nobilis, Br. J. Pharmacol., 175, 924-937, https://doi.org/10.1111/bph.14134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alijevic, O., and Kellenberger, S. (2012) Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline, J. Biol. Chem., 287, 36059-36070, https://doi.org/10.1074/jbc.M112.360487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marra, S., Ferru-Clément, R., Breuil, V., Delaunay, A., Christin, M., et al. (2016) Non-acidic activation of pain-related acid-sensing ion channel 3 by lipids, EMBO J., 35, 414-428, https://doi.org/10.15252/embj.201592335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osmakov, D. I., Koshelev, S. G., Andreev, Y. A., and Kozlov, S. A. (2017) Endogenous isoquinoline alkaloids agonists of acid-sensing ion channel type 3, Front. Mol. Neurosci., 10, 282, https://doi.org/10.3389/FNMOL.2017.00282.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Osmakov, D. I., Koshelev, S. G., Ivanov, I. A., Andreev, Y. A., and Kozlov, S. A. (2019) Endogenous neuropeptide nocistatin is a direct agonist of acid-sensing ion channels (ASIC1, ASIC2 and ASIC3), Biomolecules, 9, 401, https://doi.org/10.3390/BIOM9090401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hallberg, M., and Nyberg, F. (2003) Neuropeptide conversion to bioactive fragments – an important pathway in neuromodulation, Curr. Protein Pept. Sci., 4, 31-44, https://doi.org/10.2174/1389203033380313.

    Article  CAS  PubMed  Google Scholar 

  21. Osmakov, D. I., Koshelev, S. G., Andreev, Y. A., Dyachenko, I. A., Bondarenko, D. A., et al. (2016) Conversed mutagenesis of an inactive peptide to ASIC3 inhibitor for active sites determination, Toxicon, 116, 11-16, https://doi.org/10.1016/j.toxicon.2015.11.019.

    Article  CAS  PubMed  Google Scholar 

  22. Hallberg, M. (2015) Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors, Med. Res. Rev., 35, 464-519, https://doi.org/10.1002/med.21323.

    Article  CAS  PubMed  Google Scholar 

  23. Okuda-Ashitaka, E., and Ito, S. (2014) Nocistatin: milestone of one decade of research, Curr. Pharmaceut. Design, 21, 868-884, https://doi.org/10.2174/1381612820666141027112451.

    Article  CAS  Google Scholar 

  24. Sakurada, C., Sakurada, S., Orito, T., Tan-No, K., and Sakurada, T. (2002) Degradation of nociceptin (orphanin FQ) by mouse spinal cord synaptic membranes is triggered by endopeptidase-24.11: an in vitro and in vivo study, Biochem. Pharmacol., 64, 1293-1303, https://doi.org/10.1016/S0006-2952(02)01295-9.

    Article  CAS  PubMed  Google Scholar 

  25. Terenius, L., Sandin, J., and Sakurada, T. (2000) Nociceptin/orphanin FQ metabolism and bioactive metabolites, Peptides, 21, 919-922, https://doi.org/10.1016/S0196-9781(00)00228-X.

    Article  CAS  PubMed  Google Scholar 

  26. Montiel, J. L., Cornille, F., Roques, B. P., and Noble, F. (1997) Nociceptin/orphanin FQ metabolism: role of aminopeptidase and endopeptidase 24.15, J. Neurochem., 68, 354-361, https://doi.org/10.1046/j.1471-4159.1997.68010354.x.

    Article  CAS  PubMed  Google Scholar 

  27. Mentlein, R., and Struckhoff, G. (1989) Purification of two dipeptidyl aminopeptidases II from rat brain and their action on proline-containing neuropeptides, J. Neurochemistry., 52, 1284-1293, https://doi.org/10.1111/j.1471-4159.1989.tb01877.x.

    Article  CAS  Google Scholar 

  28. Kozlov, S. A., and Grishin, E. V. (2007) The universal algorithm of maturation for secretory and excretory protein precursors, Toxicon, 49, 721-726, https://doi.org/10.1016/j.toxicon.2006.11.007.

    Article  CAS  PubMed  Google Scholar 

  29. Erdös, E. G., and Skidgel, R. A. (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones, FASEB J., 3, 145-151, https://doi.org/10.1096/fasebj.3.2.2521610.

    Article  PubMed  Google Scholar 

  30. Wu, J., Liu, T. T., Zhou, Y. M., Qiu, C. Y., Ren, P., et al. (2017) Sensitization of ASIC3 by proteinase-activated receptor 2 signaling contributes to acidosis-induced nociception, J. Neuroinflammation, 14, 150, https://doi.org/10.1186/s12974-017-0916-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deval, E., Gasull, X., Noël, J., Salinas, M., Baron, A., et al. (2010) Acid-sensing ion channels (ASICs): pharmacology and implication in pain, Pharmacol. Ther., 128, 549-558, https://doi.org/10.1016/j.pharmthera.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  32. Gründer, S., Ramírez, A. O., and Jékely, G. (2023) Neuropeptides and degenerin/epithelial Na+ channels: a relationship from mammals to cnidarians, J. Physiol., 601, 1583-1595, https://doi.org/10.1113/JP282309.

    Article  PubMed  Google Scholar 

  33. Vick, J. S., and Askwith, C. C. (2015) ASICs and neuropeptides, Neuropharmacology, 94, 36-41, https://doi.org/10.1016/j.neuropharm.2014.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borg, C. B., Braun, N., Heusser, S. A., Bay, Y., Weis, D., Galleano, I., Lund, C., Tian, W., Haugaard-Kedström, L. M., Bennett, E. P., Lynagh, T., Strømgaard, K., Andersen, J., and Pless, S. A. (2020) Mechanism and site of action of big dynorphin on ASIC1a (supplementary), Proc. Natl. Acad. Sci. USA, 117, 7447-7454, https://doi.org/10.1073/pnas.1919323117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuspiel, S., Wiemuth, D., and Gründer, S. (2021) The neuropeptide nocistatin is not a direct agonist of acid-sensing ion channel 1a (ASIC1a), Biomolecules, 11, 571, https://doi.org/10.3390/biom11040571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Sylvie Diochot (Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France) for kindly providing the PCi plasmid coding for rat ASIC3.

Funding

The work was supported by the Russian Science Foundation (project no. 22-75-10021).

Author information

Authors and Affiliations

Authors

Contributions

S.A.K., I.A.D., and Y.A.A. conceived and supervised the study; D.I.O., N.V.T., A.A.N., V.A.P., and Y.A.P. carried out the experiments; D.I.O., I.A.D., Y.A.A., and S.A.K. discussed the results of experiments with the input from all authors; D.I.O. and S.A.K. wrote the manuscript; A.A.N. and Y.A.A. edited the manuscript.

Corresponding author

Correspondence to Dmitry I. Osmakov.

Ethics declarations

The authors declare no conflicts of interest. All experimental procedures in this study were conducted according to the international and institutional guidelines.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmakov, D.I., Tarasova, N.V., Nedorubov, A.A. et al. Nocistatin and Products of Its Proteolysis Are Dual Modulators of Type 3 Acid-Sensing Ion Channels (ASIC3) with Algesic and Analgesic Properties. Biochemistry Moscow 88, 2137–2145 (2023). https://doi.org/10.1134/S0006297923120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120155

Keywords

Navigation