Skip to main content
Log in

Topology of Ubiquitin Chains in the Chromatosomal Environment of the E3 Ubiquitin Ligase RNF168

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

DSB:

double-strand DNA breaks

HR:

homologous recombination

LR:

leucine-arginine

NanoBRET:

bioluminescence resonance energy transfer-based assay that uses NanoLuc® Luciferase

SPR:

surface plasmon resonance

References

  1. Khanna, K. K., and Jackson, S. P. (2001) DNA double-strand breaks: signaling, repair and the cancer connection, Nat. Genet., 27, 247-254, https://doi.org/10.1038/85798.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease, Nature, 461, 1071-1078, https://doi.org/10.1038/nature08467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceccaldi, R., Rondinelli, B., and D’Andrea, A. D. (2016) Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52-64, https://doi.org/10.1016/j.tcb.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  4. Price, B. D., and D’Andrea, A. D. (2013) Chromatin remodeling at DNA double-strand breaks, Cell, 152, 1344-1354, https://doi.org/10.1016/j.cell.2013.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, J. J., Lee, S. Y., and Miller, K. M. (2019) Preserving genome integrity and function: the DNA damage response and histone modifications, Crit. Rev. Biochem. Mol. Biol., 54, 208-241, https://doi.org/10.1080/10409238.2019.1620676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bacheva, A. V., Gotmanova, N. N., Belogurov, A. A., and Kudriaeva, A. A. (2021) Control of genome through variative nature of histone-modifying ubiquitin ligases, Biochemistry (Moscow), 86, S71-S95, https://doi.org/10.1134/S0006297921140066.

    Article  CAS  PubMed  Google Scholar 

  7. Ciechanover, A. (2015) The unravelling of the ubiquitin system, Nat. Rev. Mol. Cell. Biol., 16, 322-324, https://doi.org/10.1038/nrm3982.

    Article  CAS  PubMed  Google Scholar 

  8. Kudriaeva, A. A., and Belogurov, A. A. (2019) Proteasome: a nanomachinery of creative destruction, Biochemistry (Moscow), 84, 159-192, https://doi.org/10.1134/S0006297919140104.

    Article  CAS  Google Scholar 

  9. Kudriaeva, A. A., Livneh, I., Baranov, M. S., Ziganshin, R. H., Tupikin, A. E., Zaitseva, S. O., Kabilov, M. R., Ciechanover, A., and Belogurov, A. A. Jr. (2021) In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking, Cell. Chem. Biol., 28, 1192-1205, https://doi.org/10.1016/j.chembiol.2021.02.009.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z. J., and Sun, L. J. (2009) Nonproteolytic functions of ubiquitin in cell signaling, Mol. Cell, 33, 275-286, https://doi.org/10.1016/j.molcel.2009.01.014.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson, S. P., and Durocher, D. (2013) Regulation of DNA damage responses by ubiquitin and SUMO, Mol. Cell, 49, 795-807, https://doi.org/10.1016/j.molcel.2013.01.017.

    Article  CAS  PubMed  Google Scholar 

  12. Iwai, K., and Tokunaga, F. (2009) Linear polyubiquitination: a new regulator of NF-κB activation, EMBO Rep., 10, 706-713, https://doi.org/10.1038/embor.2009.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto, M. L., Wickliffe, K. E., Dong, K. C., Yu, C., Bosanac, I., Bustos, D., Phu, L., Kirkpatrick, D. S., Hymowitz, S. G., Rape, M., Kelley, R. F., and Dixit, V. M. (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody, Mol. Cell, 39, 477-484, https://doi.org/10.1016/j.molcel.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  14. Uckelmann, M., and Sixma, T. K. (2017) Histone ubiquitination in the DNA damage response, DNA Repair (Amst), 56, 92-101, https://doi.org/10.1016/j.dnarep.2017.06.011.

    Article  CAS  PubMed  Google Scholar 

  15. Nishi, R. (2017) Balancing act: To be, or not to be ubiquitylated, Mutat. Res., 803-805, 43-50, https://doi.org/10.1016/j.mrfmmm.2017.07.006.

    Article  CAS  PubMed  Google Scholar 

  16. Gudjonsson, T., Altmeyer, M., Savic, V., Toledo, L., Dinant, C., Grøfte, M., Bartkova, J., Poulsen, M., Oka, Y., Bekker-Jensen, S., Mailand, N., Neumann, B., Heriche, J. K., Shearer, R., Saunders, D., Bartek, J., Lukas, J., and Lukas, C. (2012) TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes, Cell, 150, 697-709, https://doi.org/10.1016/j.cell.2012.06.039.

    Article  CAS  PubMed  Google Scholar 

  17. Gatti, M., Pinato, S., Maiolica, A., Rocchio, F., Prato, M. G., Aebersold, R., and Penengo, L. (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage, Cell Rep., 10, 226-238, https://doi.org/10.1016/j.celrep.2014.12.021.

    Article  CAS  PubMed  Google Scholar 

  18. Kudriaeva, A. A., Lipkin, V. M., and Belogurov, A. A. (2020) Topological features of histone H2A monoubiquitination, Dokl. Biochem. Biophys., 493, 193-197, https://doi.org/10.1134/S1607672920040079.

    Article  CAS  PubMed  Google Scholar 

  19. Kelliher, J., Ghosal, G., and Leung, J. W. C. (2022) New answers to the old RIDDLE: RNF168 and the DNA damage response pathway, FEBS J., 289, 2467-2480, https://doi.org/10.1111/febs.15857.

    Article  CAS  PubMed  Google Scholar 

  20. Pinato, S., Gatti, M., Scandiuzzi, C., Confalonieri, S., and Penengo, L. (2011) UMI, a novel RNF168 ubiquitin binding domain involved in the DNA damage signaling pathway, Mol. Cell. Biol., 31, 118-126, https://doi.org/10.1128/mcb.00818-10.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi, T. S., Hirade, Y., Toma, A., Sato, Y., Yamagata, A., Goto-Ito, S., Tomito, A., Nakada, S., and Fukai, S. (2018) Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168, Nat. Commun., 9, 170, https://doi.org/10.1038/s41467-017-02345-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitevski-LeBlanc, J., Fradet-Turcotte, A., Kukic, P., Wilson, M. D., Portella, G., Yuwen, T., Panier, S., Duan, S., Canny, M. D., van Ingen, H., Arrowsmith, C. H., Rubinstein, J. L., Vendruscolo, M., Durocher, D., and Kay, L. E. (2017) The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage, Elife, 6, e23872, https://doi.org/10.7554/eLife.23872.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pinato, S., Scandiuzzi, C., Arnaudo, N., Citterio, E., Gaudino, G., and Penengo, L. (2009) RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX, BMC Mol. Biol., 10, 55, https://doi.org/10.1186/1471-2199-10-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horn, V., Uckelmann, M., Zhang, H., Eerland, J., Aarsman, I., le Paige, U. B., Davidovich, C., Sixma, T. K., and van Ingen, H. (2019) Structural basis of specific H2A K13/K15 ubiquitination by RNF168, Nat. Commun., 10, 1751, https://doi.org/10.1038/s41467-019-09756-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Machleidt, T., Woodroofe, C. C., Schwinn, M. K., Méndez, J., Robers, M. B., Zimmerman, K., Otto, P., Daniels, D. L., Kirkland, T. A., and Wood, K. V (2015) NanoBRET – a novel BRET platform for the analysis of protein-protein interactions, ACS Chem. Biol., 10, 1797-1804, https://doi.org/10.1021/acschembio.5b00143.

    Article  CAS  PubMed  Google Scholar 

  26. Weihs, F., Wang, J., Pfleger, K. D. G., and Dacres, H. (2020) Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs, Anal. Chim. Acta X, 6, 100059, https://doi.org/10.1016/j.acax.2020.100059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bednar, J., Garcia-Saez, I., Boopathi, R., Cutter, A. R., Papai, G., Reymer, A., Syed, S. H., Lone, I. N., Tonchev, O., Crucifix, C., Menoni, H., Papin, C., Skoufias, D. A., Kurumizaka, H., Lavery, R., Hamiche, A., Hayes, J. J., Schultz, P., Angelov, D., Petosa, C., and Dimitrov, S. (2017) Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1, Mol. Cell, 66, 384-397.e8, https://doi.org/10.1016/j.molcel.2017.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panier, S., Ichijima, Y., Fradet-Turcotte, A., Leung, C. C. Y., Kaustov, L., Arrowsmith, C. H., and Durocher, D. (2012) Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks, Mol. Cell, 47, 383-395, https://doi.org/10.1016/j.molcel.2012.05.045.

    Article  CAS  PubMed  Google Scholar 

  29. Thorslund, T., Ripplinger, A., Hoffmann, S., Wild, T., Uckelmann, M., Villumsen, B., Narita, T., Sixma, T. K., Choudhary, C., Bekker-Jensen, S., and Mailand, N. (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage, Nature, 527, 389-393, https://doi.org/10.1038/nature15401.

    Article  CAS  PubMed  Google Scholar 

  30. Mattiroli, F., Uckelmann, M., Sahtoe, D. D., van Dijk, W. J., and Sixma, T. K. (2014) The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A, Nat. Commun., 5, 3291, https://doi.org/10.1038/ncomms4291.

    Article  CAS  PubMed  Google Scholar 

  31. Mallette, F. A., and Richard, S. (2012) K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites, Cell Res., 22, 1221-1223, https://doi.org/10.1038/cr.2012.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 21-74-10154).

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. and A.A.B. concept and supervision of the study; A.A.K., L.A.Ya., G.A.S. and V.I.V. conducting experiments; A.A.K., V.M.L. and A.A.B. discussing results of the study; A.A.K. and A.A.B. writing text of the paper; A.A.K. and A.A.B. editing text of the paper.

Corresponding author

Correspondence to Anna A. Kudriaeva.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This paper does not describe any studies involving human participant or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudriaeva, A.A., Yakubova, L.A., Saratov, G.A. et al. Topology of Ubiquitin Chains in the Chromatosomal Environment of the E3 Ubiquitin Ligase RNF168. Biochemistry Moscow 88, 2063–2072 (2023). https://doi.org/10.1134/S000629792312009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792312009X

Keywords

Navigation