Skip to main content
Log in

A New Mouse Strain with a Mutation in the NFE2L2 (NRF2) Gene

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for studying aging. In the present work, the CRISPR/Cas9 genome editing technology was used to generate the NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from the NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to the wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of the NRF2 target genes: NAD(P)H:Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while relative mRNA levels of the monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1), and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene coding for NRF2, partially impaired function of this transcription factor, expanding our insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

AOX1:

aldehyde oxidase-1

ARE:

antioxidant response element

CCL2:

monocyte attractant protein

GOx:

glucose oxidase

GSTA4:

glutathione-S-transferase A4

HMOX1:

hemoxygenase-1

KEAP1:

Kelch-like ECH-associated protein 1

MEFs:

mouse embryonic fibroblasts

Neh:

Nrf2-ECH homology

NQO1:

NAD(P)H: quinone oxidoreductase

NRF2:

nuclear factor 2 related to erythroid factor 2

ROS:

reactive oxygen species

VCAM-1:

vascular cell adhesion molecule 1

References

  1. Kobayashi, A., Kang, M.-I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2, Mol. Cell. Biol., 24, 7130-7139, https://doi.org/10.1128/MCB.24.16.7130-7139.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kobayashi, A., Kang, M.-I., Watai, Y., Tong, K. I., Shibata, T., Uchida, K., et al. (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1, Mol. Cell. Biol., 26, 221-229, https://doi.org/10.1128/MCB.26.1.221-229.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motohashi, H., Katsuoka, F., Engel, J. D., and Yamamoto, M. (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway, Proc. Natl. Acad. Sci. USA, 101, 6379-6384, https://doi.org/10.1073/pnas.0305902101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tonelli, C., Chio, I. I. C., and Tuveson, D. A. (2018) Transcriptional regulation by Nrf2, Antioxid. Redox Signal., 29, 1727-1745, https://doi.org/10.1089/ars.2017.7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saha, S., Buttari, B., Panieri, E., Profumo, E., and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation, Molecules, 25, 5474, https://doi.org/10.3390/molecules25225474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tong, K. I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., and Yamamoto, M. (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model, Mol. Cell. Biol., 26, 2887-2900, https://doi.org/10.1128/MCB.26.8.2887-2900.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, D. D., Lo, S.-C., Cross, J. V., Templeton, D. J., and Hannink, M. (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol. Cell Biol., 24, 10941-10953, https://doi.org/10.1128/MCB.24.24.10941-10953.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A., and Yamamoto, M. (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription Internet, Genes Cells, 6, 857-868, https://doi.org/10.1046/j.1365-2443.2001.00469.x.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H., Liu, K., Geng, M., Gao, P., Wu, X., Hai, Y., et al. (2013) RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2, Cancer Res., 73, 3097-3108, https://doi.org/10.1158/0008-5472.CAN-12-3386.

    Article  CAS  PubMed  Google Scholar 

  10. Rada, P., Rojo, A. I., Chowdhry, S., McMahon, M., Hayes, J. D., and Cuadrado, A. (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner, Mol. Cell. Biol., 31, 1121-1133, https://doi.org/10.1128/MCB.01204-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J. D. (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron, J. Biol. Chem., 279, 31556-31567, https://doi.org/10.1074/jbc.M403061200.

    Article  CAS  PubMed  Google Scholar 

  12. Nioi, P., Nguyen, T., Sherratt, P. J., and Pickett, C. B. (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation, Mol. Cell. Biol., 25, 10895-10906, https://doi.org/10.1128/MCB.25.24.10895-10906.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karunatilleke, N. C., Fast, C. S., Ngo, V., Brickenden, A., Duennwald, M. L., Konermann, L., et al. (2021) Nrf2, the major regulator of the cellular oxidative stress response, is partially disordered, Int. J. Mol. Sci., 22, 7434, https://doi.org/10.3390/ijms22147434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kansanen, E., Jyrkkänen, H.-K., and Levonen, A.-L. (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids, Free Radic. Biol. Med., 52, 973-982, https://doi.org/10.1016/j.freeradbiomed.2011.11.038.

    Article  CAS  PubMed  Google Scholar 

  15. Reddy, N. M., Potteti, H. R., Mariani, T. J., Biswal, S., and Reddy, S. P. (2011) Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation, Am. J. Respir. Cell Mol. Biol., 45, 1161-1168, https://doi.org/10.1165/rcmb.2011-0144OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rushworth, S. A., Shah, S., and MacEwan, D. J. (2011) TNF mediates the sustained activation of Nrf2 in human monocytes, J. Immunol., 187, 702-707, https://doi.org/10.4049/jimmunol.1004117.

    Article  CAS  PubMed  Google Scholar 

  17. Lu, X.-Y., Wang, H.-D., Xu, J.-G., Ding, K., and Li, T. (2015) Deletion of Nrf2 exacerbates oxidative stress after traumatic brain injury in mice, Cell. Mol. Neurobiol., 35, 713-721, https://doi.org/10.1007/s10571-015-0167-9.

    Article  CAS  PubMed  Google Scholar 

  18. Chan, K., Lu, R., Chang, J. C., and Kan, Y. W. (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development, Proc. Natl. Acad. Sci. USA, 93, 13943-13948, https://doi.org/10.1073/pnas.93.24.13943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281-2308, https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho, A., Haruyama, N., and Kulkarni, A. B. (2009) Generation of transgenic mice, Curr. Protoc. Cell Biol., 42, 19.11.1-19.11.22, https://doi.org/10.1002/0471143030.cb1911s42.

    Article  Google Scholar 

  21. Averina, O. A., Vysokikh, M. Y., Permyakov, O. A., and Sergiev, P. V. (2020) Simple recommendations for improving efficiency in generating genome-edited mice, Acta Naturae, 12, 42-50, https://doi.org/10.32607/actanaturae.10937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonaparte, D., Cinelli, P., Douni, E., Hérault, Y., Maas, M., Pakarinen, P., et al. (2013) FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents: a report of the Federation of European Laboratory Animal Science Associations Working Group, Lab. Anim., 47, 134-145, https://doi.org/10.1177/0023677212473918.

    Article  CAS  PubMed  Google Scholar 

  23. Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., and Warman, M. L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT), Biotechniques, 29, 52-54, https://doi.org/10.2144/00291bm09.

    Article  CAS  PubMed  Google Scholar 

  24. Qiu, L.-Q., Lai, W. S., Stumpo, D. J., and Blackshear, P. J. (2016) Mouse embryonic fibroblast cell culture and stimulation, Bio Protoc., 6, e1859, https://doi.org/10.21769/BioProtoc.1859.

    Article  PubMed  Google Scholar 

  25. Zinovkina, L. A., Galivondzhyan, M. K., Prikhodko, A. S., Galkin, I. I., and Zinovkin, R. A. (2020) Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor alpha, PeerJ, 8, e8803, https://doi.org/10.7717/peerj.8803.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., et al. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661-674, https://doi.org/10.18632/aging.100685.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., et al. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev., 13, 76-86, https://doi.org/10.1101/gad.13.1.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katoh, Y., Iida, K., Kang, M.-I., Kobayashi, A., Mizukami, M., Tong, K. I., et al. (2005) Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome, Arch. Biochem. Biophys., 433, 342-350, https://doi.org/10.1016/j.abb.2004.10.012.

    Article  CAS  PubMed  Google Scholar 

  29. Cho, H.-Y., Jedlicka, A. E., Reddy, S. P. M., Kensler, T. W., Yamamoto, M., Zhang, L.-Y., et al. (2002) Role of NRF2 in protection against hyperoxic lung injury in mice, Am. J. Respir. Cell Mol. Biol., 26, 175-182, https://doi.org/10.1165/ajrcmb.26.2.4501.

    Article  CAS  PubMed  Google Scholar 

  30. Rangasamy, T., Cho, C. Y., Thimmulappa, R. K., Zhen, L., Srisuma, S. S., Kensler, T. W., et al. (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice, J. Clin. Invest., 114, 1248-1259, https://doi.org/10.1172/jci200421146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aoki, Y., Sato, H., Nishimura, N., Takahashi, S., Itoh, K., and Yamamoto, M. (2001) Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust, Toxicol. Appl. Pharmacol., 173, 154-160, https://doi.org/10.1006/taap.2001.9176.

    Article  CAS  PubMed  Google Scholar 

  32. Rangasamy, T., Guo, J., Mitzner, W. A., Roman, J., Singh, A., Fryer, A. D., et al. (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice, J. Exp. Med., 202, 47-59, https://doi.org/10.1084/jem.20050538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W., et al. (2016) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Invest., 116, 984-995, https://doi.org/10.1172/JCI25790.

    Article  CAS  Google Scholar 

  34. Osburn, W. O., Wakabayashi, N., Misra, V., Nilles, T., Biswal, S., Trush, M. A., et al. (2006) Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion, Arch. Biochem. Biophys., 454, 7-15, https://doi.org/10.1016/j.abb.2006.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Higgins, L. G., Kelleher, M. O., Eggleston, I. M., Itoh, K., Yamamoto, M., and Hayes, J. D. (2009) Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents, Toxicol. Appl. Pharmacol., 237, 267-280, https://doi.org/10.1016/j.taap.2009.03.005.

    Article  CAS  PubMed  Google Scholar 

  36. Moi, P., Chan, K., Asunis, I., Cao, A., and Kan, Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region, Proc. Natl. Acad. Sci. USA, 91, 9926-9930, https://doi.org/10.1073/pnas.91.21.9926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerins, M. J., and Ooi, A. (2018) The roles of NRF2 in modulating cellular iron homeostasis, Antioxid. Redox Signal., 29, 1756-1773, https://doi.org/10.1089/ars.2017.7176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gebel, S., Diehl, S., Pype, J., Friedrichs, B., Weiler, H., Schüller, J., et al. (2010) The transcriptome of Nrf2–/– mice provides evidence for impaired cell cycle progression in the development of cigarette smoke-induced emphysematous changes, Toxicol. Sci., 115, 238-252, https://doi.org/10.1093/toxsci/kfq039.

    Article  CAS  PubMed  Google Scholar 

  39. Muramatsu, H., Katsuoka, F., Toide, K., Shimizu, Y., Furusako, S., and Yamamoto, M. (2013) Nrf2 deficiency leads to behavioral, neurochemical and transcriptional changes in mice, Genes Cells, 18, 899-908, https://doi.org/10.1111/gtc.12083.

    Article  CAS  PubMed  Google Scholar 

  40. Chartoumpekis, D. V., Ziros, P. G., Zaravinos, A., Iskrenova, R. P., Psyrogiannis, A. I., Kyriazopoulou, V. E., et al. (2013) Hepatic gene expression profiling in Nrf2 knockout mice after long-term high-fat diet-induced obesity, Oxid. Med. Cell Longev., 2013, 340731, https://doi.org/10.1155/2013/340731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quiles, J. M., Narasimhan, M., Shanmugam, G., Milash, B., Hoidal, J. R., and Rajasekaran, N. S. (2017) Differential regulation of miRNA and mRNA expression in the myocardium of Nrf2 knockout mice, BMC Genomics, 18, 509, https://doi.org/10.1186/s12864-017-3875-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. Zinovkin, R. A., and Grebenchikov, O. A. (2020) Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients, Biochemistry (Moscow), 85, 833-837, https://doi.org/10.1134/S0006297920070111.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H., et al. (2006) Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression, Am. J. Physiol. Heart Circ. Physiol., 290, H1862-H1870, https://doi.org/10.1152/ajpheart.00651.2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Olga Yurievna Pletjushkina for her invaluable help in working with the MEFs.

Funding

This work was financially supported by the Russian Science Foundation (project no. 21-64-00006).

Author information

Authors and Affiliations

Authors

Contributions

E.S.E. conducting experiments, writing the text, N.D.K. conducting experiments, statistical analysis, and preparation of figures (E.S.E. and N.D.K. contributed equally to the work), O.A.A. working with laboratory animals, conducting experiments, discussing the results of the study, O.A.P., M.A.E., and A.S.P. conducting experiments, L.A.Z. and P.V.S. conducting experiments, discussing the results of the study, R.A.Z. writing the text, concept and guiding the work.

Corresponding author

Correspondence to Roman A. Zinovkin.

Ethics declarations

The work with mice was approved by the local bioethics committee “Institute of Mitoengineering MSU” LLC, protocol #79 of April 28, 2015. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, E.S., Kondratenko, N.D., Averina, O.A. et al. A New Mouse Strain with a Mutation in the NFE2L2 (NRF2) Gene. Biochemistry Moscow 88, 1987–1996 (2023). https://doi.org/10.1134/S0006297923120039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120039

Keywords

Navigation