Skip to main content
Log in

The Role of Ubiquitin–Proteasome System in the Biology of Stem Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Selective degradation of cellular proteins by the ubiquitin–proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CSC:

cancer stem cell

ESC:

embryonic stem cell

HSC:

hematopoietic stem cell

iPSC:

induced pluripotent stem cell

MHC:

major histocompatibility complex

MSC:

mesenchymal stem cell

NSC:

neural stem cell

PSC:

pluripotent stem cell

SC:

stem cell

UPS:

ubiquitin–proteasome system

References

  1. Kolios, G., and Moodley, Y. (2013) Introduction to stem cells and regenerative medicine, Respiration, 85, 3-10, https://doi.org/10.1159/000345615.

    Article  PubMed  Google Scholar 

  2. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., and Rybak, Z. (2019) Stem cells: past, present, and future, Stem Cell Res. Ther., 10, 68, https://doi.org/10.1186/s13287-019-1165-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Selenina, A. V., Tsimokha, A. S., and Tomilin, A. N. (2017) Proteasomes in protein homeostasis of pluripotent stem cells, Acta Naturae, 9, 39-47, https://doi.org/10.32607/20758251-2017-9-3-39-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chagastelles, P. C., and Nardi, N. B. (2011) Biology of stem cells: an overview, Kidney Int. Suppl., 1, 63-67, https://doi.org/10.1038/kisup.2011.15.

    Article  Google Scholar 

  5. Preston, S. L., Alison, M. R., Forbes, S. J., Direkze, N. C., Poulsom, R., and Wright, N. A. (2003) The new stem cell biology: something for everyone, Mol. Pathol., 56, 86-96, https://doi.org/10.1136/mp.56.2.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, S. K., and Khoo, B. Y. (2021) An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy, Oncol. Lett., 22, 785, https://doi.org/10.3892/ol.2021.13046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Apostolou, E., Blau, H., Chien, K., Lancaster, M. A., Tata, P. R., Trompouki, E., Watt, F. M., Zeng, Y. A., and Zernicka-Goetz, M. (2023) Progress and challenges in stem cell biology, Nat. Cell Biol., 25, 203-206, https://doi.org/10.1038/s41556-023-01087-y.

    Article  CAS  PubMed  Google Scholar 

  8. Naujokat, C., and Sarić, T. (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells, Stem Cells, 25, 2408-2418, https://doi.org/10.1634/stemcells.2007-0255.

    Article  CAS  PubMed  Google Scholar 

  9. Okita, Y., and Nakayama, K. I. (2012) UPS delivers pluripotency, Cell Stem Cell, 11, 728-730, https://doi.org/10.1016/j.stem.2012.11.009.

    Article  CAS  PubMed  Google Scholar 

  10. Bax, M., McKenna, J., Do-Ha, D., Stevens, C. H., Higginbottom, S., Balez, R., Cabral-da-Silva, M. E. C., Farrawell, N. E., Engel, M., Poronnik, P., Yerbury, J. J., Saunders, D. N., and Ooi, L. (2019) The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation, Cells, 8, 581, https://doi.org/10.3390/cells8060581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, J., and Baek, K. H. (2018) Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system, Cell. Mol. Life Sci., 75, 1947-1957, https://doi.org/10.1007/s00018-018-2770-7.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, C., Fan, L., Cen, P., Chen, E., Jiang, Z., and Li, L. (2016) Energy metabolism plays a critical role in stem cell maintenance and differentiation, Int. J. Mol. Sci., 17, 253, https://doi.org/10.3390/ijms17020253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., Brand, M. D., and Zeng, X. (2011) A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells, J. Cell. Sci., 124, 348-358, https://doi.org/10.1242/jcs.072272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fillmore, N., Huqi, A., Jaswal, J. S., Mori, J., Paulin, R., Haromy, A., Onay-Besikci, A., Ionescu, L., Thébaud, B., Michelakis, E., and Lopaschuk, G. D. (2015) Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival, PLoS One, 10, e0120257, https://doi.org/10.1371/journal.pone.0120257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morozov, A., Astakhova, T., Erokhov, P., and Karpov, V. (2022) The ATP/Mg2+ balance affects the degradation of short fluorogenic substrates by the 20S proteasome, Methods Protoc., 5, 15, https://doi.org/10.3390/mps5010015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dikic, I. (2017) Proteasomal and autophagic degradation systems, Annu. Rev. Biochem., 86, 193-224, https://doi.org/10.1146/annurev-biochem-061516-044908.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C., and Ciechanover, A. (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities, Int. J. Biochem. Cell Biol., 79, 403-418, https://doi.org/10.1016/j.biocel.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  18. Finley, D., and Varshavsky, A. (1985) The ubiquitin system: functions and mechanisms, Trends Biochem. Sci., 10, 343-347, https://doi.org/10.1016/0968-0004(85)90108-2.

    Article  CAS  Google Scholar 

  19. Ciechanover, A., and Kwon, Y. (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med., 47, e147, https://doi.org/10.1038/emm.2014.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yau, R., and Rape, M. (2016) The increasing complexity of the ubiquitin code, Nat. Cell Biol., 18, 579-586, https://doi.org/10.1038/ncb3358.

    Article  CAS  PubMed  Google Scholar 

  21. Swatek, K. N., and Komander, D. (2016) Ubiquitin modifications, Cell Res., 26, 399-422, https://doi.org/10.1038/cr.2016.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L. H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., Jaroszewski, L., Sommer, T., Kwon, Y. T., Guharoy, M., Tompa, P., and Ciechanover, A. (2016) Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination, Proc. Natl. Acad. Sci. USA, 113, E4639-E4647, https://doi.org/10.1073/pnas.1608644113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collins, G. A., and Goldberg, A. L. (2017) The logic of the 26S proteasome, Cell, 169, 792-806, https://doi.org/10.1016/j.cell.2017.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reits, E., Griekspoor, A., Neijssen, J., Groothuis, T., Jalink, K., Van Veelen, P., Janssen, H., Calafat, J., Drijfhout, J. W., and Neefjes, J. (2003) Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I, Immunity, 18, 97-108, https://doi.org/10.1016/s1074-7613(02)00511-3.

    Article  CAS  PubMed  Google Scholar 

  25. De Araujo, C. B., Heimann, A. S., Remer, R. A., Russo, L. C., Colquhoun, A., Forti, F. L., and Ferro, E. S. (2019) Intracellular peptides in cell biology and pharmacology, Biomolecules, 9, 150, https://doi.org/10.3390/biom9040150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramachandran, K. V., and Margolis, S. S. (2017) A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function, Nat. Struct. Mol. Biol., 24, 419-430, https://doi.org/10.1038/nsmb.3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finley, D., Chen, X., and Walters, K. J. (2016) Gates, channels, and switches: elements of the proteasome machine, Trends Biochem. Sci., 41, 77-93, https://doi.org/10.1016/j.tibs.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  28. Humbard, M. A., and Maupin-Furlow, J. A. (2013) Prokaryotic proteasomes: nanocompartments of degradation, J. Mol. Microbiol. Biotechnol., 23, 321-334, https://doi.org/10.1159/000351348.

    Article  CAS  PubMed  Google Scholar 

  29. Budenholzer, L., Cheng, C. L., Li, Y., and Hochstrasser, M. (2017) Proteasome structure and assembly, J. Mol. Biol., 429, 3500-3524, https://doi.org/10.1016/j.jmb.2017.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution, Nature, 386, 463-471, https://doi.org/10.1038/386463a0.

    Article  CAS  PubMed  Google Scholar 

  31. Glickman, M. H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82, 373-428, https://doi.org/10.1152/physrev.00027.2001.

    Article  CAS  PubMed  Google Scholar 

  32. Rousseau, A., and Bertolotti, A. (2018) Regulation of proteasome assembly and activity in health and disease, Nat. Rev. Mol. Cell Biol., 19, 697-712, https://doi.org/10.1038/s41580-018-0040-z.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka, K. (2009) The proteasome: overview of structure and functions, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85, 12-36, https://doi.org/10.2183/pjab.85.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu, Y., Lee, B. H., King, R. W., Finley, D., and Kirschner, M. W. (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis, Science, 348, 1250834, https://doi.org/10.1126/science.1250834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, C. W., and Jacobson, A. D. (2013) Functions of the 19S complex in proteasomal degradation, Trends Biochem. Sci., 38, 103-110, https://doi.org/10.1016/j.tibs.2012.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blickwedehl, J., Agarwal, M., Seong, C., Pandita, R. K., Melendy, T., Sung, P., Pandita, T. K., and Bangia, N. (2008) Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability, Proc. Natl. Acad. Sci. USA, 105, 16165-16170, https://doi.org/10.1073/pnas.0803145105.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bochmann, I., Ebstein, F., Lehmann, A., Wohlschlaeger, J., Sixt, S. U., Kloetzel, P. M., and Dahlmann, B. (2014) T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes, J. Cell Mol. Med., 18, 59-68, https://doi.org/10.1111/jcmm.12160.

    Article  CAS  PubMed  Google Scholar 

  38. Morozov, A. V., and Karpov, V. L. (2018) Biological consequences of structural and functional proteasome diversity, Heliyon, 4, e00894, https://doi.org/10.1016/j.heliyon.2018.e00894.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferrington, D. A., and Gregerson, D. S. (2012) Immunoproteasomes: structure, function, and antigen presentation, Prog. Mol. Biol. Transl. Sci., 109, 75-112, https://doi.org/10.1016/B978-0-12-397863-9.00003-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kammerl, I. E., and Meiners, S. (2016) Proteasome function shapes innate and adaptive immune responses, Am. J. Physiol. Lung Cell Mol. Physiol., 311, L328-L336, https://doi.org/10.1152/ajplung.00156.2016.

    Article  PubMed  Google Scholar 

  41. Murata, S., Takahama, Y., Kasahara, M., and Tanaka, K. (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease, Nat. Immunol., 19, 923-931, https://doi.org/10.1038/s41590-018-0186-z.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura, H., Caturegli, P., Takahashi, M., and Suzuki, K. (2015) New Insights into the function of the immunoproteasome in immune and nonimmune cells, J. Immunol. Res., 2015, 541984, https://doi.org/10.1155/2015/541984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lundh, M., Bugliani, M., Dahlby, T., Chou, D. H., Wagner, B., Ghiasi, S. M., De Tata, V., Chen, Z., Lund, M. N., Davies, M. J., Marchetti, P., and Mandrup-Poulsen, T. (2017) The immunoproteasome is induced by cytokines and regulates apoptosis in human islets, J. Endocrinol., 233, 369-379, https://doi.org/10.1530/JOE-17-0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnston-Carey, H. K., Pomatto, L. C., and Davies, K. J. (2015) The immunoproteasome in oxidative stress, aging, and disease, Crit. Rev. Biochem. Mol. Biol., 51, 268-281, https://doi.org/10.3109/10409238.2016.1172554.

    Article  CAS  PubMed  Google Scholar 

  45. Ebstein, F., Textoris-Taube, K., Keller, C., Golnik, R., Vigneron, N., Van den Eynde, B. J., Schuler-Thurner, B., Schadendorf, D., Lorenz, F. K., Uckert, W., Urban, S., Lehmann, A., Albrecht-Koepke, N., Janek, K., Henklein, P., Niewienda, A., Kloetzel, P. M., and Mishto, M. (2016) Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes, Sci. Rep., 6, 24032, https://doi.org/10.1038/srep24032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodin, A., Morozov, A., Andreeva, N., Funikov, S., Burov, A., Belyavsky, A., and Karpov, V. (2021) Reorganization of the proteasome pool in mesenchymal stem cellsduring aging in culture. Abstract, FEBS Open Bio, 11, 345, https://doi.org/10.1002/2211-5463.13205.

    Article  Google Scholar 

  47. Kniepert, A., and Groettrup, M. (2014) The unique functions of tissue-specific proteasomes, Trends Biochem. Sci., 39, 17-24, https://doi.org/10.1016/j.tibs.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  48. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes, Science, 316, 1349-1353, https://doi.org/10.1126/science.1141915.

    Article  CAS  PubMed  Google Scholar 

  49. Kincaid, E. Z., Murata, S., Tanaka, K., and Rock, K. L. (2016) Specialized proteasome subunits have an essential role in the thymic selection of CD8+ T cells, Nat Immunol., 17, 938-945, https://doi.org/10.1038/ni.3480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Widjaja, C. E., Olvera, J. G., Metz, P. J., Phan, A. T., Savas, J. N., de Bruin, G., Leestemaker, Y., Berkers, C. R., de Jong, A., Florea, B. I., Fisch, K., Lopez, J., Kim, S. H., Garcia, D. A., Searles, S., Bui, J. D., Chang, A. N., Yates, J. R., Goldrath, A. W., Overkleeft, H. S., Ovaa, H., and Chang, J. T. (2017) Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification, J. Clin. Invest., 127, 3609-3623, https://doi.org/10.1172/JCI90895.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bikorimana, J. P., El-Hachem, N., El-Kadiry, A. E., Abusarah, J., Salame, N., Shammaa, R., and Rafei, M. (2021) Thymoproteasome-expressing mesenchymal stromal cells confer protective anti-tumor immunity via cross-priming of endogenous dendritic cells, Front. Immunol., 11, 596303, https://doi.org/10.3389/fimmu.2020.596303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ciechanover, A. (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Cell Death Differ., 12, 1178-1190, https://doi.org/10.1038/sj.cdd.4401692.

    Article  CAS  PubMed  Google Scholar 

  53. Yamanaka, S. (2012) Induced pluripotent stem cells: past, present, and future, Cell Stem Cell, 10, 678-684, https://doi.org/10.1016/j.stem.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  54. Kim, S. H., Kim, M. O., Cho, Y. Y., Yao, K., Kim, D. J., Jeong, C. H., Yu, D. H., Bae, K. B., Cho, E. J., Jung, S. K., Lee, M. H., Chen, H., Kim, J. Y., Bode, A. M., and Dong, Z. (2014) ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal, Stem Cell Res., 13, 1-11, https://doi.org/10.1016/j.scr.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  55. Buckley, S. M., Aranda-Orgilles, B., Strikoudis, A., Apostolou, E., Loizou, E., Moran-Crusio, K., Farnsworth, C. L., Koller, A. A., Dasgupta, R., Silva, J. C., Stadtfeld, M., Hochedlinger, K., Chen, E. I., and Aifantis, I. (2012) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system, Cell Stem Cell, 11, 783-798, https://doi.org/10.1016/j.stem.2012.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vilchez, D., Boyer, L., Morantte, I., Lutz, M., Merkwirth, C., Joyce, D., Spencer, B., Page, L., Masliah, E., Berggren, W. T., Gage, F. H., and Dillin, A. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11, Nature, 489, 304-308, https://doi.org/10.1038/nature11468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kitajima, Y., Suzuki, N., Nunomiya, A., Osana, S., Yoshioka, K., Tashiro, Y., Takahashi, R., Ono, Y., Aoki, M., and Nagatomi, R. (2018) The ubiquitin-proteasome system is indispensable for the maintenance of muscle stem cells, Stem Cell Rep., 11, 1523-1538, https://doi.org/10.1016/j.stemcr.2018.10.009.

    Article  CAS  Google Scholar 

  58. Saez, I., Koyuncu, S., Gutierrez-Garcia, R., Dieterich, C., and Vilchez, D. (2018) Insights into the ubiquitin-proteasome system of human embryonic stem cells, Sci. Rep., 8, 4092, https://doi.org/10.1038/s41598-018-22384-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin, J., Liu, J., Chen, C., Liu, Z., Jiang, C., Chu, H., Pan, W., Wang, X., Zhang, L., Li, B., Jiang, C., Ge, X., Xie, X., and Wang, P. (2016) The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog, Nat. Commun., 7, 13594, https://doi.org/10.1038/ncomms13594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Z., Wu, Q., Guryanova, O. A., Cheng, L., Shou, W., Rich, J. N., and Bao, S. (2011) Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells, Nat. Cell. Biol., 13, 142-152, https://doi.org/10.1038/ncb2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuchs, G., Shema, E., Vesterman, R., Kotler, E., Wolchinsky, Z., Wilder, S., Golomb, L., Pribluda, A., Zhang, F., Haj-Yahya, M., Feldmesser, E., Brik, A., Yu, X., Hanna, J., Aberdam, D., Domany, E., and Oren, M. (2015) RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation, Mol. Cell., 46, 662-673, https://doi.org/10.1016/j.molcel.2012.05.023.

    Article  CAS  Google Scholar 

  62. Sussman, R. T., Stanek, T. J., Esteso, P., Gearhart, J. D., Knudsen, K. E., and McMahon, S. B. (2013) The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2), J. Biol. Chem., 288, 24234-24246, https://doi.org/10.1074/jbc.M113.469783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raynes, R., Pomatto, L. C., and Davies, K. J. (2016) Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways, Mol. Aspects Med., 50, 41-55, https://doi.org/10.1016/j.mam.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu, L., Song, H. F., Zhang, W. G., Liu, X. Q., Zhu, Q., Cheng, X. L., Yang, G. J., Li, A., and Xiao, Z. C. (2012) Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion, Biochem. Biophys. Res. Commun., 422, 121-127, https://doi.org/10.1016/j.bbrc.2012.04.119.

    Article  CAS  PubMed  Google Scholar 

  65. Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, J. M., and Lee, T. (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture, J. Cell. Physiol., 205, 194-201, https://doi.org/10.1002/jcp.20376.

    Article  CAS  PubMed  Google Scholar 

  66. Kapetanou, M., Chondrogianni, N., Petrakis, S., Koliakos, G., and Gonos, E. S. (2017) Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells, Free Radic. Biol. Med., 103, 226-235, https://doi.org/10.1016/j.freeradbiomed.2016.12.035.

    Article  CAS  PubMed  Google Scholar 

  67. Strikoudis, A., Guillamot, M., and Aifantis, I. (2014) Regulation of stem cell function by protein ubiquitylation, EMBO Rep., 15, 365-382, https://doi.org/10.1002/embr.201338373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rathinam, C., Thien, C. B., Langdon, W. Y., Gu, H., and Flavell, R. A. (2008) The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells, Genes Dev., 22, 992-997, https://doi.org/10.1101/gad.1651408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Han, G., Li, A. G., Liang, Y. Y., Owens, P., He, W., Lu, S., Yoshimatsu, Y., Wang, D., Ten Dijke, P., Lin, X., and Wang, X. J. (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development, Dev. Cell, 11, 301-312, https://doi.org/10.1016/j.devcel.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  70. Karpiuk, O., Najafova, Z., Kramer, F., Hennion, M., Galonska, C., König, A., Snaidero, N., Vogel, T., Shchebet, A., Begus-Nahrmann, Y., Kassem, M., Simons, M., Shcherbata, H., Beissbarth, T., and Johnsen, S. A. (2012) The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells, Mol. Cell, 46, 705-713, https://doi.org/10.1016/j.molcel.2012.05.022.

    Article  CAS  PubMed  Google Scholar 

  71. Shema, E., Tirosh, I., Aylon, Y., Huang, J., Ye, C., Moskovits, N., Raver-Shapira, N., Minsky, N., Pirngruber, J., Tarcic, G., Hublarova, P., Moyal, L., Gana-Weisz, M., Shiloh, Y., Yarden, Y., Johnsen, S. A., Vojtesek, B., Berger, S. L., and Oren, M. (2008) The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression, Genes Dev., 22, 2664-2476, https://doi.org/10.1101/gad.1703008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hernebring, M., Fredriksson, Å., Liljevald, M., Cvijovic, M., Norrman, K., Wiseman, J., Semb, H., and Nyström, T. (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28, Sci. Rep., 3, 1381, https://doi.org/10.1038/srep01381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balayan, V., and Guddati, A. K. (2022) Tumor dormancy: biologic and therapeutic implications, World J. Oncol., 13, 8-19, https://doi.org/10.14740/wjon1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lenos, K. J., and Vermeulen, L. (2016) Cancer stem cells don’t waste their time cleaning-low proteasome activity, a marker for cancer stem cell function, Ann. Transl. Med., 4, 519, https://doi.org/10.21037/atm.2016.11.81.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Voutsadakis, I. A. (2017) Proteasome expression and activity in cancer and cancer stem cells, Tumour Biol., 39, 1010428317692248, https://doi.org/10.1177/1010428317692248.

    Article  CAS  PubMed  Google Scholar 

  76. Mossallam, G. I., Fattah, R. A., Bokhary, M., Moneer, M., and Mahmoud, H. K. (2021) LMP7 polymorphism may modify the presentation and clinical impact of minor histocompatibility antigens in matched related hematopoietic stem cell transplantation, Cell Immunol., 364, 104329, https://doi.org/10.1016/j.cellimm.2021.104329.

    Article  CAS  PubMed  Google Scholar 

  77. Schröter, F., and Adjaye, J. (2014) The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res. Ther., 5, 24, https://doi.org/10.1186/scrt413.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-773).

Author information

Authors and Affiliations

Authors

Contributions

A.V.B. and A.A.R. wrote the article; A.V.M. and V.L.K. edited the text.

Corresponding author

Correspondence to Alexey V. Morozov.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burov, A.V., Rodin, A.A., Karpov, V.L. et al. The Role of Ubiquitin–Proteasome System in the Biology of Stem Cells. Biochemistry Moscow 88, 2043–2053 (2023). https://doi.org/10.1134/S0006297923120076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120076

Keywords

Navigation