Skip to main content
Log in

Effect of Dexamethasone on Adhesion of Human Neutrophils and Concomitant Secretion

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Lf:

lactoferrin

LH:

lysyl hydroxylase

MMP-9:

matrix metalloproteinase 9

NGAL:

neutrophil gelatinase-associated lipocalin

NO:

nitric oxide

ROS:

reactive oxygen species

References

  1. Schofield, Z. V., Woodruff, T. M., Halai, R., Wu, M. C., and Cooper, M. A. (2013) Neutrophils – a key component of ischemia reperfusion injury, Shock, 40, 463-470, https://doi.org/10.1097/SHK.0000000000000044.

    Article  CAS  PubMed  Google Scholar 

  2. Patel, N. (2009) Targeting leukostasis for the treatment of early diabetic retinopathy, Cardiovasc. Hematol. Disord. Drug Targets, 9, 222-229, https://doi.org/10.2174/187152909789007052.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, W., Cronin, C. G., Cao, Z., Wang, C., Ruan, J., Pulikkot, S., Hall, A., Sun, H., Groisman, A., Chen, Y., Vella, A. T., Hu, L., Liang, B. T., and Fan, Z. (2022) Nexinhib20 inhibits neutrophil adhesion and β2 integrin activation by antagonizing Rac-1-guanosine 5′-triphosphate interaction, J. Immunol., 209, 1574-1585, https://doi.org/10.4049/jimmunol.2101112.

    Article  CAS  PubMed  Google Scholar 

  4. Giacalone, V. D., Margaroli, C., Mall, M. A., and Tirouvanziam, R. (2020) Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease, Int. J. Mol. Sci., 21, 851, https://doi.org/10.3390/ijms21030851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laval, J., Ralhan, A., and Hartl, D. (2016) Neutrophils in cystic fibrosis, Biol. Chem., 397, 485-496, https://doi.org/10.1515/hsz-2015-0271.

    Article  CAS  PubMed  Google Scholar 

  6. Russell, D. W., Gaggar, A., and Solomon, G. M. (2016) Neutrophil fates in bronchiectasis and alpha-1 antitrypsin deficiency, Ann. Am. Thoracic Soc., 13, S123-S129, https://doi.org/10.1513/AnnalsATS.201512-805KV.

    Article  Google Scholar 

  7. Chiang, C. C., Korinek, M., Cheng, W. J., and Hwang, T. L. (2020) Targeting neutrophils to treat acute respiratory distress syndrome in coronavirus disease, Front. Pharmacol., 11, 572009, https://doi.org/10.3389/fphar.2020.572009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meizlish, M. L., Pine, A. B., Bishai, J. D., Goshua, G., Nadelmann, E. R., Simonov, M., Chang, C. H., Zhang, H., Shallow, M., Bahel, P., Owusu, K., Yamamoto, Y., Arora, T., Atri, D. S., Patel, A., Gbyli, R., Kwan, J., Won, C. H., Dela Cruz, C., Price, C., et al. (2021) A neutrophil activation signature predicts critical illness and mortality in COVID-19, Blood Adv., 5, 1164-1177, https://doi.org/10.1182/bloodadvances.2020003568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed, M. H., and Hassan, A. (2020) Dexamethasone for the treatment of coronavirus disease (COVID-19): a review, SN Comprehensive Clin. Med., 2, 2637-2646, https://doi.org/10.1007/s42399-020-00610-8.

    Article  CAS  Google Scholar 

  10. Nhean, S., Varela, M. E., Nguyen, Y. N., Juarez, A., Huynh, T., Udeh, D., and Tseng, A. L. (2023) COVID-19: a review of potential treatments (corticosteroids, remdesivir, tocilizumab, bamlanivimab/etesevimab, and casirivimab/imdevimab) and pharmacological considerations, J. Pharm. Pract., 36, 407-417, https://doi.org/10.1177/08971900211048139.

    Article  PubMed  Google Scholar 

  11. Hong, S., Wang, H., Li, S., Liu, J., and Qiao, L. (2023) A systematic review and meta-analysis of glucocorticoids treatment in severe COVID-19: methylprednisolone versus dexamethasone, BMC Infect. Diseases, 23, 290, https://doi.org/10.1186/s12879-023-08280-2.

    Article  CAS  Google Scholar 

  12. Mohammed, M. A. (2023) Fighting cytokine storm and immunomodulatory deficiency: by using natural products therapy up to now, Front. Pharmacol., 14, 1111329, https://doi.org/10.3389/fphar.2023.1111329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hafkamp, F. M. J., Mol, S., Waque, I., and De Jong, E. C. (2022) Dexamethasone, but not vitamin D or A, dampens the inflammatory neutrophil response to protect at-risk COVID-19 patients, Immune Netw., 22, e36, https://doi.org/10.4110/in.2022.22.e36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sinha, S., Rosin, N. L., Arora, R., Labit, E., Jaffer, A., Cao, L., Farias, R., Nguyen, A. P., de Almeida, L. G. N., Dufour, A., Bromley, A., McDonald, B., Gillrie, M. R., Fritzler, M. J., Yipp, B. G., and Biernaskie, J. (2022) Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19, Nat. Med., 28, 201-211, https://doi.org/10.1038/s41591-021-01576-3.

    Article  CAS  PubMed  Google Scholar 

  15. Urbach, V., Verriere, V., Grumbach, Y., Bousquet, J., and Harvey, B. J. (2006) Rapid anti-secretory effects of glucocorticoids in human airway epithelium, Steroids, 71, 323-328, https://doi.org/10.1016/j.steroids.2005.09.014.

    Article  CAS  PubMed  Google Scholar 

  16. Panettieri, R. A., Schaafsma, D., Amrani, Y., Koziol-White, C., Ostrom, R., and Tliba, O. (2019) Non-genomic effects of glucocorticoids: an updated view, Trends Pharmacol. Sci., 40, 38-49, https://doi.org/10.1016/j.tips.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  17. Ronchetti, S., Ricci, E., Migliorati, G., Gentili, M., and Riccardi, C. (2018) How glucocorticoids affect the neutrophil life, Int. J. Mol. Sci., 19, 4090, https://doi.org/10.3390/ijms19124090.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Subrahmanyam, Y. V., Yamaga, S., Prashar, Y., Lee, H. H., Hoe, N. P., Kluger, Y., Gerstein, M., Goguen, J. D., Newburger, P. E., and Weissman, S. M. (2001) RNA expression patterns change dramatically in human neutrophils exposed to bacteria, Blood, 97, 2457-2468, https://doi.org/10.1182/blood.v97.8.2457.

    Article  CAS  PubMed  Google Scholar 

  19. Monteseirin, J., Chacon, P., Vega, A., El Bekay, R., Alvarez, M., Alba, G., Conde, M., Jimenez, J., Asturias, J. A., Martinez, A., Conde, J., Pintado, E., Bedoya, F. J., and Sobrino, F. (2004) Human neutrophils synthesize IL-8 in an IgE-mediated activation, J. Leukoc. Biol., 76, 692-700, https://doi.org/10.1189/jlb.0903441.

    Article  CAS  PubMed  Google Scholar 

  20. Galkina, S. I., Fedorova, N. V., Serebryakova, M. V., Romanova, J. M., Golyshev, S. A., Stadnichuk, V. I., Baratova, L. A., Sud’ina, G. F., and Klein, T. (2012) Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking, Biochim. Biophys. Acta, 1820, 1705-1714, https://doi.org/10.1016/j.bbagen.2012.06.016.

    Article  CAS  PubMed  Google Scholar 

  21. Menegazzi, R., Busetto, S., Decleva, E., Cramer, R., Dri, P., and Patriarca, P. (1999) Triggering of chloride ion efflux from human neutrophils as a novel function of leukocyte beta 2 integrins: relationship with spreading and activation of the respiratory burst, J. Immunol., 162, 423-434, https://doi.org/10.4049/jimmunol.162.1.423.

    Article  CAS  PubMed  Google Scholar 

  22. Umanskiy, K., Robinson, C., Cave, C., Williams, M. A., Lentsch, A. B., Cuschieri, J., and Solomkin, J. S. (2003) NADPH oxidase activation in fibronectin adherent human neutrophils: A potential role for beta1 integrin ligation, Surgery, 134, 378-383, https://doi.org/10.1067/msy.2003.253.

    Article  PubMed  Google Scholar 

  23. Galkina, S. I., Golenkina, E. A., Serebryakova, M. V., Fedorova, N. V., Ksenofontov, A. L., Stadnichuk, V. I., and Sud’ina, G. F. (2022) Ivermectin affects neutrophil-induced inflammation through inhibition of hydroxylysine but stimulation of cathepsin G and phenylalanine secretion, Biomedicines, 10, 3284, https://doi.org/10.3390/biomedicines10123284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golenkina, E. A., Galkina, S. I., Viryasova, G. M., and Sud’ina, G. F. (2023) The pro-oxidant effect of class A CpG ODNs on human neutrophils includes both non-specific Stimulation of ROS production and structurally determined induction of NO synthesis, Oxygen, 3, 20-31, https://doi.org/10.3390/oxygen3010002.

    Article  CAS  Google Scholar 

  25. Galkina, S. I., Fedorova, N. V., Serebryakova, M. V., Arifulin, E. A., Stadnichuk, V. I., Baratova, L. A., and Sud'ina, G. F. (2017) Mold alkaloid cytochalasin D modifies the morphology and secretion of fMLP-, LPS-, or PMA-stimulated neutrophils upon adhesion to fibronectin, Mediat. Inflamm., 2017, 4308684, https://doi.org/10.1155/2017/4308684.

    Article  CAS  Google Scholar 

  26. Fedorova, N. V., Ksenofontov, A. L., Serebryakova, M. V., Stadnichuk, V. I., Gaponova, T. V., Baratova, L. A., Sud’ina, G. F., and Galkina, S. I. (2018) Neutrophils release metalloproteinases during adhesion in the presence of insulin, but cathepsin G in the presence of glucagon, Mediat. Inflamm., 2018, 1574928, https://doi.org/10.1155/2018/1574928.

    Article  CAS  Google Scholar 

  27. Galkina, S. I., Fedorova, N. V., Ksenofontov, A. L., Serebryakova, M. V., Golenkina, E. A., Stadnichuk, V. I., Baratova, L. A., and Sud’ina, G. F. (2021) Neutrophil adhesion and the release of the free amino acid hydroxylysine, Cells, 10, 563, https://doi.org/10.3390/cells10030563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galkina, S. I., Fedorova, N. V., Ksenofontov, A. L., Stadnichuk, V. I., Baratova, L. A., and Sud'ina, G. F. (2019) Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids, Cell Adhes. Migrat., 13, 98-105, https://doi.org/10.1080/19336918.2018.1540903.

    Article  CAS  Google Scholar 

  29. Song, Y., Zheng, S., Wang, J., Long, H., Fang, L., Wang, G., Li, Z., Que, T., Liu, Y., Li, Y., Zhang, X., Fang, W., and Qi, S. (2017) Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma, Oncotarget, 8, 41947-41962, https://doi.org/10.18632/oncotarget.16710.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qi, Q., Huang, W., Zhang, H., Zhang, B., Sun, X., Ma, J., Zhu, C., and Wang, C. (2021) Bioinformatic analysis of PLOD family member expression and prognostic value in non-small cell lung cancer, Transl. Cancer Res., 10, 2707-2724, https://doi.org/10.21037/tcr-21-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, J., Qin, J., Cao, Q., Hu, P., Zhong, C., and Tu, C. (2020) Hypoxia-induced PLOD2 regulates invasion and epithelial-mesenchymal transition in endometrial carcinoma cells, Genes Genomics, 42, 317-324, https://doi.org/10.1007/s13258-019-00901-y.

    Article  CAS  PubMed  Google Scholar 

  32. Ngo, T. T., and Lenhoff, H. M. (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochemi., 105, 389-397, https://doi.org/10.1016/0003-2697(80)90475-3.

    Article  CAS  Google Scholar 

  33. Petrov, Iu. P., Neguliaev, Iu. A., and Tsupkina, N. V. (2014) Morphology of NCTC cells upon a contact with type I collagen added to culture medium [in Russian], Tsitologiia, 56, 591-598.

    PubMed  Google Scholar 

  34. Hafezi-Moghadam, A., Simoncini, T., Yang, Z., Limbourg, F. P., Plumier, J. C., Rebsamen, M. C., Hsieh, C. M., Chui, D. S., Thomas, K. L., Prorock, A. J., Laubach, V. E., Moskowitz, M. A., French, B. A., Ley, K., and Liao, J. K. (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase, Nat. Med., 8, 473-479, https://doi.org/10.1038/nm0502-473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yukawa, H., Shen, J., Harada, N., Cho-Tamaoka, H., and Yamashita, T. (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons, Neuroscience, 130, 485-496, https://doi.org/10.1016/j.neuroscience.2004.09.037.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuda, K., Sasaki, M., Baba, H., and Kamiya, Y. (2022) Neuronal nitric oxide synthase suppression confers the prolonged analgesic effect of sciatic nerve block with perineural dexamethasone in postoperative pain model mice, J. Pain, 23, 1765-1778, https://doi.org/10.1016/j.jpain.2022.06.001.

    Article  CAS  PubMed  Google Scholar 

  37. Calzetta, L., Chetta, A., Aiello, M., Pistocchini, E., and Rogliani, P. (2022) The impact of corticosteroids on human airway smooth muscle contractility and airway hyperresponsiveness: a systematic review, Int. J. Mol. Sci., 23, 15285, https://doi.org/10.3390/ijms232315285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia, W. Y., and Zhang, J. J. (2022) Effects of glucocorticoids on leukocytes: genomic and non-genomic mechanisms, World J. Clin. Cases, 10, 7187-7194, https://doi.org/10.12998/wjcc.v10.i21.7187.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nunez, F. J., Johnstone, T. B., Corpuz, M. L., Kazarian, A. G., Mohajer, N. N., Tliba, O., Panettieri, R. A., Jr., Koziol-White, C., Roosan, M. R., and Ostrom, R. S. (2020) Glucocorticoids rapidly activate cAMP production via G(alphas) to initiate non-genomic signaling that contributes to one-third of their canonical genomic effects, FASEB J., 34, 2882-2895, https://doi.org/10.1096/fj.201902521R.

    Article  CAS  PubMed  Google Scholar 

  40. Hynes, D., and Harvey, B. J. (2019) Dexamethasone reduces airway epithelial Cl secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K+ channels, Steroids, 151, 108459, https://doi.org/10.1016/j.steroids.2019.108459.

    Article  CAS  PubMed  Google Scholar 

  41. Freischlag, J. A., Colburn, M. D., Quinones-Baldrich, W. J., and Moore, W. S. (1992) Alteration of neutrophil (PMN) function by heparin, dexamethasone, and enalapril, J. Surg. Res., 52, 523-529, https://doi.org/10.1016/0022-4804(92)90322-q.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, D., Xiong, R., Chen, X., Li, P., Ning, Y., Peng, Y., Zhao, Y., Yang, N., and Zhou, Y. (2014) The glucocorticoid dexamethasone inhibits U937 cell adhesion and neutrophil release via RhoA/ROCK1-dependent and independent pathways, Cell. Physiol. Biochem., 33, 1654-1662, https://doi.org/10.1159/000362948.

    Article  CAS  PubMed  Google Scholar 

  43. Wallerath, T., Gath, I., Aulitzky, W. E., Pollock, J. S., Kleinert, H., and Forstermann, U. (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets, Thromb. Haemost., 77, 163-167, https://doi.org/10.1055/s-0038-1655925.

    Article  CAS  PubMed  Google Scholar 

  44. Bellefontaine, N., Hanchate, N. K., Parkash, J., Campagne, C., de Seranno, S., Clasadonte, J., d’Anglemont de Tassigny, X., and Prevot, V. (2011) Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction, Neuroendocrinology, 93, 74-89, https://doi.org/10.1159/000324147.

    Article  CAS  PubMed  Google Scholar 

  45. Urbach, V., Walsh, D. E., Mainprice, B., Bousquet, J., and Harvey, B. J. (2002) Rapid non-genomic inhibition of ATP-induced Cl secretion by dexamethasone in human bronchial epithelium, J. Physiol., 545, 869-878, https://doi.org/10.1113/jphysiol.2002.028183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Risteli, M., Ruotsalainen, H., Salo, A. M., Sormunen, R., Sipila, L., Baker, N. L., Lamande, S. R., Vimpari-Kauppinen, L., and Myllyla, R. (2009) Reduction of lysyl hydroxylase 3 causes deleterious changes in the deposition and organization of extracellular matrix, J. Biol. Chem., 284, 28204-28211, https://doi.org/10.1074/jbc.M109.038190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salo, A. M., Wang, C., Sipila, L., Sormunen, R., Vapola, M., Kervinen, P., Ruotsalainen, H., Heikkinen, J., and Myllyla, R. (2006) Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling, J. Cell. Physiol., 207, 644-653, https://doi.org/10.1002/jcp.20596.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y., Guo, H., Terajima, M., Banerjee, P., Liu, X., Yu, J., Momin, A. A., Katayama, H., Hanash, S. M., Burns, A. R., Fields, G. B., Yamauchi, M., and Kurie, J. M. (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space, J. Biol. Chem., 291, 25799-25808, https://doi.org/10.1074/jbc.M116.759803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, C., Ristiluoma, M. M., Salo, A. M., Eskelinen, S., and Myllyla, R. (2012) Lysyl hydroxylase 3 is secreted from cells by two pathways, J. Cell. Physiol., 227, 668-675, https://doi.org/10.1002/jcp.22774.

    Article  CAS  PubMed  Google Scholar 

  50. Faurschou, M., and Borregaard, N. (2003) Neutrophil granules and secretory vesicles in inflammation, Microbes Infect., 5, 1317-1327, https://doi.org/10.1016/j.micinf.2003.09.008.

    Article  CAS  PubMed  Google Scholar 

  51. Sheng, Y., Peng, W., Huang, Y., Cheng, L., Meng, Y., Kwantwi, L. B., Yang, J., Xu, J., Xiao, H., Kzhyshkowska, J., and Wu, Q. (2023) Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis, J. Leukoc. Biol., 113, 383-399, https://doi.org/10.1093/jleuko/qiad004.

    Article  PubMed  Google Scholar 

  52. Bostanci Durmus, A., Dincer Cengiz, S., Yilmaz, H., Candar, T., Gursoy, A. Y., and Sinem Caglar, G. (2019) The levels of matrix metalloproteinase-9 and neutrophil gelatinase-associated lipocalin in different stages of endometriosis, J. Obstetrics Gynaecol., 39, 991-995, https://doi.org/10.1080/01443615.2019.1584889.

    Article  CAS  Google Scholar 

  53. He, Z., Paule, M. G., and Ferguson, S. A. (2012) Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21, Neurotoxicol. Teratol., 34, 331-337, https://doi.org/10.1016/j.ntt.2012.03.004.

    Article  CAS  PubMed  Google Scholar 

  54. Jiguet-Jiglaire, C., Boissonneau, S., Denicolai, E., Hein, V., Lasseur, R., Garcia, J., Romain, S., Appay, R., Graillon, T., Mason, W., Carpentier, A. F., Brandes, A. A., Ouafik, L., Wick, W., Baaziz, A., Gigan, J. P., Arguello, R. J., Figarella-Branger, D., Chinot, O., and Tabouret, E. (2022) Plasmatic MMP9 released from tumor-infiltrating neutrophils is predictive for bevacizumab efficacy in glioblastoma patients: an AVAglio ancillary study, Acta Neuropathol. Commun., 10, 1, https://doi.org/10.1186/s40478-021-01305-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujita, M., Harada, E., Ikegame, S., Ye, Q., Ouchi, H., Inoshima, I., and Nakanishi, Y. (2007) Doxycycline attenuated lung injury by its biological effect apart from its antimicrobial function, Pulmonary Pharmacol. Ther., 20, 669-675, https://doi.org/10.1016/j.pupt.2006.08.006.

    Article  CAS  Google Scholar 

  56. Moon, A., Gil, S., Gill, S. E., Chen, P., and Matute-Bello, G. (2012) Doxycycline impairs neutrophil migration to the airspaces of the lung in mice exposed to intratracheal lipopolysaccharide, J. Inflamm., 9, 31, https://doi.org/10.1186/1476-9255-9-31.

    Article  CAS  Google Scholar 

  57. Zhang, F., Hu, L., Wu, Y. X., Fan, L., Liu, W. T., Wang, J., Sun, H., and Zhang, J. S. (2019) Doxycycline alleviates paraquat-induced acute lung injury by inhibiting neutrophil-derived matrix metalloproteinase 9, Int. Immunopharmacol., 72, 243-251, https://doi.org/10.1016/j.intimp.2019.04.015.

    Article  CAS  PubMed  Google Scholar 

  58. Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y., and Chen, Z. (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins, PLoS One, 6, e20599, https://doi.org/10.1371/journal.pone.0020599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ong, C. W., Pabisiak, P. J., Brilha, S., Singh, P., Roncaroli, F., Elkington, P. T., and Friedland, J. S. (2017) Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis, J. Neuroinflamm., 14, 31, https://doi.org/10.1186/s12974-017-0801-1.

    Article  CAS  Google Scholar 

  60. Hamada, T., Fondevila, C., Busuttil, R. W., and Coito, A. J. (2008) Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury, Hepatology, 47, 186-198, https://doi.org/10.1002/hep.21922.

    Article  CAS  PubMed  Google Scholar 

  61. Dayer, C., and Stamenkovic, I. (2015) Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming Growth factor-beta (TGF-beta) activation and fibroblast differentiation, J. Biol. Chem., 290, 13763-13778, https://doi.org/10.1074/jbc.M114.622274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, Q., and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion, Genes Dev., 13, 35-48, https://doi.org/10.1101/gad.13.1.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dorschner, R. A., Lee, J., Cohen, O., Costantini, T., Baird, A., and Eliceiri, B. P. (2020) ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury, Sci. Adv., 6, eaay0518, https://doi.org/10.1126/sciadv.aay0518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shao, Y., Li, L., Liu, L., Yang, Y., Huang, J., Ji, D., Zhou, Y., Chen, Y., Zhu, Z., and Sun, B. (2022) CD44/ERM/F-actin complex mediates targeted nuclear degranulation and excessive neutrophil extracellular trap formation during sepsis, J. Cell. Mol. Med., 26, 2089-2103, https://doi.org/10.1111/jcmm.17231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, Q., and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis, Genes Dev., 14, 163-176, https://doi.org/10.1101/gad.14.2.163.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chintala, S. K., Sawaya, R., Aggarwal, B. B., Majumder, S., Giri, D. K., Kyritsis, A. P., Gokaslan, Z. L., and Rao, J. S. (1998) Induction of matrix metalloproteinase-9 requires a polymerized actin cytoskeleton in human malignant glioma cells, J. Biol. Chem., 273, 13545-13551.

    Article  CAS  PubMed  Google Scholar 

  67. Samanna, V., Ma, T., Mak, T. W., Rogers, M., and Chellaiah, M. A. (2007) Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function, J. Cell. Physiol., 213, 710-720, https://doi.org/10.1002/jcp.21137.

    Article  CAS  PubMed  Google Scholar 

  68. Garvin, M. R., Alvarez, C., Miller, J. I., Prates, E. T., Walker, A. M., Amos, B. K., Mast, A. E., Justice, A., Aronow, B., and Jacobson, D. (2020) A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm, eLife, 9, e59177, https://doi.org/10.7554/eLife.59177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.I.G., E.A.G., and G.F.S. conception and article writing; S.I.G., E.A.G., N.I.F., A.L.K., M.V.S., V.I.S., L.A.B., and G.F.S. conducting experiments, processing, and discussing the results, designing the article. G.F.S. and L.A.B. provided resources for performing experiments.

Corresponding authors

Correspondence to Svetlana I. Galkina or Galina F. Sud’ina.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All the procedures carried out in the research with participation of humans were in compliance with the ethical standards of the National Research Ethics Committee and with the Helsinki Declaration of 1964 and its subsequent changes or with comparable ethics standards. Informed voluntary consent was obtained from every participant of the study. Work with human neutrophils was approved by the Commission on Bioethics of the Lomonosov Moscow State University. Application no. 6-h ed. 3 was approved at the meeting of the Commission on Bioethics no. 131-days on May 31, 2021.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkina, S.I., Golenkina, E.A., Fedorova, N.V. et al. Effect of Dexamethasone on Adhesion of Human Neutrophils and Concomitant Secretion. Biochemistry Moscow 88, 2094–2106 (2023). https://doi.org/10.1134/S000629792312012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792312012X

Keywords

Navigation