Skip to main content
Log in

Impact of Lipid Matrix Composition on Activity of Membranotropic Enzymes Galactonolactone Oxidase from Trypanosoma cruzi and L-Galactono-1,4-Lactone Dehydrogenase from Arabidopsis thaliana in the System of Reverse Micelles

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that the micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on activity of the membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Brij-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein–lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brij-96) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AL:

D-arabinono-1,4-lactone

AOT:

bis-2-ethylhexyl sulfosuccinate, anionic SAA

AtGALDH:

L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana

CTAB:

cetyltrimethylammonium bromide, cationic SAA

DCPIP:

2,6-dichlorophenolindophenol

EA:

electron acceptor

GL:

L-galactono-1,4-lactone

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PMS:

phenazine methosulfate

SAA:

surface active agents

TcGAL:

galactonolactone oxidase from Trypanosoma cruzi

W0 :

the hydration degree

References

  1. Kudryashova, E. V., Leferink, N. G. H., Slot, I. G. M., and van Berkel, W. J. H. (2011) Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C, Biochim. Biophys. Acta, 1814, 545-552, https://doi.org/10.1016/j.bbapap.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  2. Quiñones, W., Acosta, H., Gonçalves, C. S., Motta, M. C. M., Gualdrón-López, M., and Michels, P. A. M. (2020) Structure, properties, and function of glycosomes in Trypanosoma cruzi, Front. Cell. Infect. Microbiol., 10, 25, https://doi.org/10.3389/fcimb.2020.00025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson, S. R., Prathalingam, S. R., Taylor, M. C., Horn, D., and Kelly, J. M. (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome, Proc. Natl. Acad. Sci. USA, 102, 11645-11650, https://doi.org/10.1073/pnas.0504251102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Logan, F. J., Taylor, M. C., Wilkinson, S. R., Kaur, H., and Kelly, J. M. (2007) The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase, Biochem. J., 407, 419-426, https://doi.org/10.1042/BJ20070766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chudin, A. A., and Kudryashova, E. V. (2022) Improved enzymatic assay and inhibition analysis of redox membranotropic enzymes, AtGALDH and TcGAL, using a reversed micellar system, Analytica, 3, 36-53, https://doi.org/10.3390/analytica3010004.

    Article  CAS  Google Scholar 

  6. Leferink, N. G. H., Heuts, D. P. H. M., Fraaije, M. W., and van Berkel, W. J. H. (2008) The growing VAO flavoprotein family, Arch. Biochem. Biophys., 474, 292-301, https://doi.org/10.1016/j.abb.2008.01.027.

    Article  CAS  PubMed  Google Scholar 

  7. Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L., and Martinek, K. (1984) A microheterogeneous medium for chemical (enzymic) reactions based on a colloidal solution of water in an organic solvent, Russ. Chem. Rev., 53, 319-331, https://doi.org/10.1070/RC1984v053n04ABEH003052.

    Article  Google Scholar 

  8. Klyachko, N. L., Shchedrina, V. A., Efimov, A. V., Kazakov, S. V., Gazaryan, I. G., Kristal, B. S., and Brown, A. M. (2005) pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification, J. Biol. Chem., 280, 16106-16114, https://doi.org/10.1074/jbc.M414285200.

    Article  CAS  PubMed  Google Scholar 

  9. Kudryashova, E. V., Bronza, V. L., Vinogradov, A. A., Kamyshny, A., Magdassi, S., and Levashov, A. V. (2011) Regulation of acid phosphatase in reverse micellar system by lipids additives: structural aspects, J. Colloid Interface Sci., 353, 490-497, https://doi.org/10.1016/j.jcis.2010.09.072.

    Article  CAS  PubMed  Google Scholar 

  10. De Azevedo-Martins, A. C., Ocaña, K., de Souza, W., de Vasconcelos, A. T. R., Teixeira, M. M. G., Camargo, E. P., Alves, J. M. P., and Motta, M. C. M. (2022) The importance of glycerophospholipid production to the mutualist symbiosis of trypanosomatids, Pathogens, 11, 41, https://doi.org/10.3390/pathogens11010041.

    Article  CAS  Google Scholar 

  11. Oliveira, M. M., Timm, S. L., and Costa, S. C. G. (1977) Lipid composition of Trypanosoma cruzi, Comp. Biochem. Physiol. B Comp. Biochem., 58, 195-199, https://doi.org/10.1016/0305-0491(77)90109-2.

    Article  CAS  Google Scholar 

  12. Urbina, J. A., Marchan, E., Lazardi, K., Visbal, G., Apitz-Castro, R., Gil, F., Aguirre, T., Piras, M. M., and Piras, R. (1993) Inhibition of phosphatidylcholine biosynthesis and cell proliferation in Trypanosoma cruz by ajoene, an antiplatelet compound isolated from garlic, Biochem. Pharmacol., 45, 2381-2387, https://doi.org/10.1016/0006-2952(93)90217-k.

    Article  CAS  PubMed  Google Scholar 

  13. Shome, A., Roy, S., and Kumar, P. (2007) Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface, Langmuir, 23, 4130-4136, https://doi.org/10.1021/la062804j.

    Article  CAS  PubMed  Google Scholar 

  14. Leferink, N. G. H., van Den Berg, W. A. M., and van Berkel, W. J. H. (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis, FEBS J., 275, 713-726, https://doi.org/10.1111/j.1742-4658.2007.06233.x.

    Article  CAS  PubMed  Google Scholar 

  15. Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L., Chernyak, V. Y., Martinek, K. (1982) Enzymes incorporated into reversed micelles of surfactants in organic solvents. Study of the protein-aerosol OT-H2O-octane system by sedimentation analysis [in Russian], Biokhimiya, 47, 86-99.

    Google Scholar 

  16. Levashov, A. V., Khmelnitsky, Y. L., Klyachko, N. L., Chernyak, V. Y., and Martinek, K. (1981) Ultracantrifugation of reversed micelles in organic solvent: new approach to determination of molecular weight and effective size of proteins, Anal. Biochem., 118, 42-46, https://doi.org/10.1016/0003-2697(81)90153-6.

    Article  CAS  PubMed  Google Scholar 

  17. Krasnopevtseva, M. K., Belik, V. P., Bogdanov, A. A., Semenova, I. V., Smolin, A. G., and Vasyutinskii, O. S. (2020) Decay times and anisotropy in polarized fluorescence of flavin adenine dinucleotide determined with subnanosecond resolution, Tech. Phys. Lett., 46, 614-616, https://doi.org/10.1134/S1063785020060218.

    Article  CAS  Google Scholar 

  18. Kudryashova, E. V., Visser, A. J. W. G., and van Berkel, W. J. H. (2008) Monomer formation and function of p-Hydroxybenzoate hydroxylase in reverse micelles and dimethylsulfoxide/water mixtures, ChemBioChem, 9, 413-419, https://doi.org/10.1002/cbic.200700267.

    Article  CAS  PubMed  Google Scholar 

  19. Levashov, A. V., and Klyachko, N. L. (2001) Reverse micellar systems, Methods Biotechnol., 15, 575-586, https://doi.org/10.1385/1-59259-112-4:575.

    Article  CAS  Google Scholar 

  20. Tsui, F. C., Ojcius, D. M., and Hubbell, W. L. (1986) The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers, Biophys. J., 49, 459-468, https://doi.org/10.1016/S0006-3495(86)83655-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levashov, A. V., Ugolnikova, A. V., Ivanov, M. V., and Klyachko, N. L. (1997) Formation of homo- and heterooligomeric supramolecular structures by D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase in reversed micelles of aerosol OT in octane, Biochem. Mol. Biol. Int., 42, 527-534, https://doi.org/10.1080/15216549700202931.

    Article  CAS  PubMed  Google Scholar 

  22. Chatterley, A. S., Laity, P., Holland, C., Weidner, T., Woutersen, S., and Giubertoni, G. (2022) Broadband multidimensional spectroscopy identifies the amide II vibrations in silkworm films, Molecules, 27, 6275, https://doi.org/10.3390/molecules27196275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kudryashova, E. V., Gladilin, A. K., and Levashov, A. V. (2002) Proteins in supramolecular ensembles: investigation of structure with time-resolved fluorescence anisotropy, Uspekhi Biol. Khimii, 42, 257-294.

    CAS  Google Scholar 

  24. Jonas, A., and Drengler, S. M. (1977) Fluorescence polarization studies of human and rhesus a-i apolipoproteins and their complexes with phosphatidylcholine, Biochem. Biophys. Res. Commun., 78, 1424-1430, https://doi.org/10.1016/0006-291x(77)91451-6.

    Article  CAS  PubMed  Google Scholar 

  25. Lolkema, J. S., and Slotboom, D. J. (2015) The Hill analysis and co-ion-driven transporter kinetics, J. Gen. Physiol., 145, 565-574, https://doi.org/10.1085/jgp.201411332.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Azimi, M., Nafissi-Varcheh, N., Faramarzi, M. A., and Aboofazeli, R. (2016) Laccase activity in CTAB-based water-in-oil microemulsions, Iran J. Pharm. Res., 15, 441-452.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kabanov, A. V., Nametkin, S. N., and Levashov, A. V. (1990) The principal difference in regulation of the catalytic activity of water-soluble and membrane forms of enzymes in reversed micelles. γ-Glutamyltransferase and aminopeptidase, FEBS Lett., 267, 236-238, https://doi.org/10.1016/0014-5793(90)80933-a.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Z., and Robb, D. A. (2005) Tyrosinase activity in reversed micelles, Biocatal. Biotransform., 23, 423-430, https://doi.org/10.1080/10242420500387433.

    Article  CAS  Google Scholar 

  29. Gupte, A., Nagarajan, R., and Kilara, A. (1995) Enzymatic oxidation of cholesterol in reverse micelles, Ind. Eng. Chem. Res., 34, 2910-2922, https://doi.org/10.1021/ie00047a045.

    Article  CAS  Google Scholar 

  30. Chudin, A. A., Zlotnikov, I. D., Krylov, S. S., Semenov, V. V., and Kuryashova, E. V. (2023) Allylpolyalkoxybenzene inhibitors of galactonolactone oxidase from Trypanosoma cruzi, Biochemistry (Moscow), 88, 131-141, https://doi.org/10.1134/S000629792301011X.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Equipment acquired through the program of Moscow State University Development, FT-IR Bruker Tensor 27 spectrometer (Germany) and CD-spectrometer Jasco J-815 (JASCO, Japan), was used in this work.

Author information

Authors and Affiliations

Authors

Contributions

E.V.K. concept of the study and supervision of the work; A.A.Ch. conducting experiments; E.V.K. and A.A.Ch. discussion of the study results; A.A.Ch. writing text of the paper; E.V.K. and A.A.Ch. editing text of the paper.

Corresponding author

Correspondence to Elena V. Kudryashova.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This work does not describe any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudin, A.A., Kudryashova, E.V. Impact of Lipid Matrix Composition on Activity of Membranotropic Enzymes Galactonolactone Oxidase from Trypanosoma cruzi and L-Galactono-1,4-Lactone Dehydrogenase from Arabidopsis thaliana in the System of Reverse Micelles. Biochemistry Moscow 88, 2073–2083 (2023). https://doi.org/10.1134/S0006297923120106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120106

Keywords

Navigation