Skip to main content
Log in

Dicarbonyl-Modified Low-Density Lipoproteins Are Key Inducers of LOX-1 and NOX1 Gene Expression in the Cultured Human Umbilical Vein Endotheliocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CAT (CAT):

catalase

GL:

glyoxal

GPx (GPX):

glutathione peroxidases

HUVECs:

human umbilical vein endothelial cells

LDL:

low-density lipoproteins

LOOH:

lipid hydroperoxides

LOX-1 (LOX-1, OLR1),:

lectin-like oxidized LDL receptor-1

MDA:

malone dialdehyde

MGL:

methyl glyoxal

NOX1 (NOX1):

NADPH-oxidase 1

Prdx (PRDX):

peroxiredoxins

RCC:

reactive carbonyl compounds

ROS:

reactive oxygen species

SOD (SOD):

superoxide dismutase

References

  1. Goncharov, R. G., and Sharapov, M. G. (2023) Ischemia-reperfusion injury: molecular mechanisms of pathogenesis and methods of their correction, Mol. Biol., 6, 1150-1174, https://doi.org/10.1134/S0026893323060067.

    Article  Google Scholar 

  2. Dubois-Deruy, E., Peugnet, V., Turkieh, A., and Pinet, F. (2020) Oxidative stress in cardiovascular diseases, Antioxidants (Basel), 9, 864, https://doi.org/10.3390/antiox9090864.

    Article  CAS  PubMed  Google Scholar 

  3. Lankin, V. Z., and Tikhaze, A. K. (2003) Atherosclerosis as a free radical pathology and antioxidative therapy of this disease, Free Radicals NO and Inflammation, IOS Press, Amsterdam etc., 344, 218-231.

  4. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, https://doi.org/10.2174/1874609809666160926142640.

    Article  CAS  PubMed  Google Scholar 

  5. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of LDL as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants (Basel), 11, 1565, https://doi.org/10.3390/antiox11081565.

    Article  CAS  PubMed  Google Scholar 

  6. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2023) Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development, Int. J. Mol. Sci., 24, 128, https://doi.org/10.3390/ijms24010128.

    Article  CAS  Google Scholar 

  7. Spiteller, G. (2008) Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products, Ann. NY Acad. Sci., 1126, 128-133, https://doi.org/10.1196/annals.1433.031.

    Article  CAS  PubMed  Google Scholar 

  8. Lankin, V. Z., Shadyro, O. I., Shumaev, K. B., Tikhaze, A. K., and Sladkova, A. A. (2019) Non-enzymatic methylglyoxal formation from glucose metabolites and generation of superoxide anion radical during methylglyoxal-dependend cross-links reaction, J. Antioxidant Activity, 1, 34-45, https://doi.org/10.14302/issn.2471-2140.jaa-19-2997.

    Article  Google Scholar 

  9. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Belova-Kumskova, E. M., Grechnikova, M. A., and Viigimaa, M. (2016) Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients, J. Diabetes, 8, 398-404, https://doi.org/10.1111/1753-0407.12309.

    Article  CAS  PubMed  Google Scholar 

  10. Lankin, V. Z., Shumaev, K. B., Tikhaze, A. K., and Kurganov, B. I. (2017) Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase, Dokl. Biochem. Biophys, 475, 287-290, https://doi.org/10.1134/S1607672917040123.

    Article  CAS  PubMed  Google Scholar 

  11. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Hydroperoxide reducing enzymes in the regulation of free radical processes, Biochemistry (Moscow), 86, 1256-1274, https://doi.org/10.1134/S0006297921100084.

    Article  CAS  PubMed  Google Scholar 

  12. Witztum, J. L., and Steinberg, D. (1991) Role of oxidized low-density lipoprotein in atherogenesis, J. Clin. Invest., 88, 1785-1792,  https://doi.org/10.1172/JCI115499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yla-Herttuala, S. (1994) Role of lipid and lipoprotein oxidation in the pathogenesis of atherosclerosis, Drugs Today, 30, 507-514.

    CAS  Google Scholar 

  14. Steinberg, D. (1995) Role of oxydized LDL and antioxidants in atherosclerosis, Adv. Exp. Med. Biol., 369, 39-48, https://doi.org/10.1007/978-1-4615-1957-7_5.

    Article  CAS  PubMed  Google Scholar 

  15. Lankin, V., Viigimaa, M., Tikhaze, A., Kumskova, E., Konovalova, G., Abina, J., Zemtsovskaya, G., Kotkina, T., Yanushevskaya, E., and Vlasik, T. (2011) Cholesterol-rich low-density lipoproteins are also more oxidized, Mol. Cell. Biochem., 355, 187-191, https://doi.org/10.1007/s11010-011-0853-y.

    Article  CAS  PubMed  Google Scholar 

  16. Viigimaa, M., Abina, J., Zemtsovskaya, G., Tikhaze, A., Konovalova, G., Kumskova, E., and Lankin, V. (2010) Malondialdehyde modified low-density lipoproteins as biomarker for atherosclerosis, Blood Press, 19, 164-168, https://doi.org/10.3109/08037051.2010.484158.

    Article  CAS  PubMed  Google Scholar 

  17. Sharapov, M. G., Goncharov, R. G., Gordeeva, A. E., Novoselov, V. I., Antonova, O. A., Tikhaze, A. K., and Lankin, V. Z. (2016) Enzymatic antioxidant system of endotheliocytes, Dokl. Biochem. Biophys., 471, 410-412, https://doi.org/10.1134/S1607672916060090.

    Article  CAS  PubMed  Google Scholar 

  18. Lankin, V. Z., Sharapov, M. G., Goncharov, R. G., Tikhaze, A. K., and Novoselov, V. I. (2019) Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins, Dokl. Biochem. Biophys., 485, 132-134, https://doi.org/10.1134/S1607672919020157.

    Article  CAS  PubMed  Google Scholar 

  19. Rubio-Gayosso, I., Platts, S. H., and Duling, B. R. (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 290, H2247-H2256, https://doi.org/10.1152/ajpheart.00796.2005.

    Article  CAS  PubMed  Google Scholar 

  20. Pirillo, A., Norata, G. D., and Catapano, A. L. (2013) LOX-1, OxLDL, and atherosclerosis, Mediat. Inflamm., 2013, 152786, https://doi.org/10.1155/2013/152786.

    Article  CAS  Google Scholar 

  21. Lubrano, V., and Balzan, S. (2014) LOX-1 and ROS, inseparable factors in the process of endothelial damage, Free Radic. Res., 48, 841-848, https://doi.org/10.3109/10715762.2014.929122.

    Article  CAS  PubMed  Google Scholar 

  22. Chistiakov, D. A., Orekhov, A. N., and Bobryshev, Yu. V. (2016) LOX-1-mediated effects on vascular cells in atherosclerosis, Cell. Physiol. Biochem., 38, 1851-1859, https://doi.org/10.1159/000443123.

    Article  CAS  PubMed  Google Scholar 

  23. Kattoor, A. J., Kanuri, S. H., and Mehta, J. L. (2019) Role of Ox-LDL and LOX-1 in atherogenesis, Curr. Med. Chem., 26, 1693-1700,  https://doi.org/10.2174/0929867325666180508100950.

    Article  CAS  PubMed  Google Scholar 

  24. Galle, J., Schneider, R., Heinloth, A., Wanner, C., Galle, P. R., Conzelmann, E., Dimmeler, S., and Heermeier, K. (1999) Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress, Kidney Int., 55, 1450-1461, https://doi.org/10.1046/j.1523-1755.1999.00351.

    Article  CAS  PubMed  Google Scholar 

  25. Lankin, V. Z., Tikhaze, A. K., Kapel’ko, V. I., Shepel’kova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G., and Belenkov, Y. N. (2007) Mechanisms of oxidative modification of low-density lipoproteins under conditions of oxidative and carbonyl stress, Biochemistry (Moscow), 72, 1081-1090, https://doi.org/10.1134/S0006297907100069.

    Article  CAS  PubMed  Google Scholar 

  26. Lankin, V. Z., Tikhaze, A. K., and Kumskova, E. M. (2012) Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein, Mol. Cell. Biochem., 365, 93-98, https://doi.org/10.1007/s11010-012-1247-5.

    Article  CAS  PubMed  Google Scholar 

  27. Lankin, V. Z., Tikhaze, A. K., and Konovalova, G. G. (2023) Differences in structural changes and pathophysiological effects of low-density lipoprotein particles upon accumulation of acylhydroperoxy derivatives in their outer phospholipid monolayer or upon modification of apoprotein B-100 by natural dicarbonyls, Biochemistry (Moscow), 88, 1910-1919, https://doi.org/10.1134/S0006297923110196.

    Article  CAS  PubMed  Google Scholar 

  28. Antonov, A. S., Nikolaeva, M. A., Klueva, T. S., Romanov, Y. A., Babaev, V. R., Bystrevskaya, V. B., Perov, N. A., Repin, V. S., and Smirnov, V. N. (1986) Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations, Atherosclerosis, 59, 1-19, https://doi.org/10.1016/0021-9150(86)90027-4.

    Article  CAS  PubMed  Google Scholar 

  29. Tertov, V. V., Kaplun, V. V., Dvoryantsev, S. N., and Orekhov, A. N. (1995) Apolipoprotein B-bound lipids as a marker for evaluation of low-density lipoprotein oxidation in vivo, Biochem. Biophys. Res. Commun., 214, 608-613, https://doi.org/10.1006/bbrc.1995.2329.

    Article  CAS  PubMed  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275, https://doi.org/10.1016/S0021-9258(19)52451-6.

    Article  CAS  PubMed  Google Scholar 

  31. Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., and Thorpe, S. R. (1997) Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein, Biochem. J., 322, 317-325, https://doi.org/10.1042/bj3220317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tikhaze, A. K., Domogatsky, S. P., and Lankin, V. Z. (2021) Clearance of carbonyl-modified low-density lipoproteins in rabbits, Biochemistry (Moscow) Suppl. Ser. B Biomed. Chem., 15, 119-124, https://doi.org/10.1134/S1990750821020104.

    Article  Google Scholar 

  33. Lankin, V. Z., Konovalova, G. G., Domogatsky, S. P., Tikhaze, A. K., Klots, I. N., and Ezhov, M. V. (2023) Clearance and utilization of dicarbonyl-modified LDL in monkeys and humans, Int. J. Mol. Sci., 24, 10471, https://doi.org/10.3390/ijms241310471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schalkwijk, C. G., Vermeer, M. A., Stehouwer, C. D., te Koppele, J., Princen, H. M., and van Hinsbergh, V. W. (1998) Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein, Biochim. Biophys. Acta, 1394, 187-198, https://doi.org/10.1016/s0005-2760(98)00112-x.

    Article  CAS  PubMed  Google Scholar 

  35. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., and Novoselova, E. G. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6, Arch. Biochem. Biophys., 702, 108830, https://doi.org/10.1016/j.abb.2021.108830.

    Article  CAS  PubMed  Google Scholar 

  36. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101-1108, https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  37. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  38. Sharapov, M. G., Goncharov, R. G., Parfenyuk, S. B., and Glushkova, O. V. (2022) Effect of peroxiredoxin 6 on p53 transcription factor level, Biochemistry (Moscow), 87, 839-849, https://doi.org/10.1134/S0006297922080156.

    Article  CAS  PubMed  Google Scholar 

  39. Aoyama, T., Fujiwara, H., Masaki, T., and Sawamura, T. (1999) Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultured endothelial cells, J. Mol. Cell. Cardiol., 31, 2101-2114, https://doi.org/10.1006/jmcc.1999.1041.

    Article  CAS  PubMed  Google Scholar 

  40. Hong, D., Bai, Y. P., Gao, H. C., Wang, X., Li, L. F., Zhang, G. G., and Hu, C. P. (2014) Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway, Atherosclerosis, 235, 310-317, https://doi.org/10.1016/j.atherosclerosis.2014.04.028.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y. C., Lee, A. S., Lu, L. S., Ke, L. Y., Chen, W. Y., Dong, J. W., Lu, J., Chen, Z., Chu, C. S., Chan, H. C., Kuzan, T. Y., Tsai, M. H., Hsu, W. L., Dixon, R. A. F., Sawamura, T., Chang, K. C., and Chen, C. H. (2018) Human electronegative LDL induces mitochondrial dysfunction and premature senescence of vascular cells in vivo, Aging cell, 17, e12792, https://doi.org/10.1111/acel.12792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagci, E. Z., Vodovotz, Y., Billiar, T. R., Ermentrout, G. B., and Bahar, I. (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores, Biophys. J., 90, 1546-1559, https://doi.org/10.1529/biophysj.105.068122.

    Article  CAS  PubMed  Google Scholar 

  43. Batty, M., Bennett, M. R., and Yu, E. (2022) The role of oxidative stress in atherosclerosis, Cells, 11, 3843, https://doi.org/10.3390/cells11233843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohlgrüber, S., Upadhye, A., Dyballa-Rukes, N., McNamara, C. A., and Altschmied, J. (2017) Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology, Antioxid. Redox Signal, 26, 679-699, https://doi.org/10.1089/ars.2016.6946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leonarduzzi, G., Sottero, B., and Poli, G. (2010) Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited, Pharmacol. Ther., 128, 336-374, https://doi.org/10.1016/j.pharmthera.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  46. Szalóki, N., Krieger, J. W., Komáromi, I., Tóth, K., and Vámosi, G. (2015) Evidence for homodimerization of the c-Fos transcription factor in live cells revealed by fluorescence microscopy and computer modeling, Mol. Cell. Biol., 35, 3785-3798, https://doi.org/10.1128/MCB.00346-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1, Proc. Natl. Acad. Sci. USA, 94, 3633-3638, https://doi.org/10.1073/pnas.94.8.3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi, T., and Dansen, T. B. (2020) Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal., 33, 839-859, https://doi.org/10.1089/ars.2020.8074.

    Article  CAS  PubMed  Google Scholar 

  49. Ji, Z., He, L., Regev, A., and Struhl, K. (2019) Inflammatory regulatory network mediated by the joint action of NF-κB, STAT3, and AP-1 factors is involved in many human cancers, Proc. Natl. Acad. Sci. USA, 116, 9453-9462, https://doi.org/10.1073/pnas.1821068116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kielian, T., Haney, A., Mayes, P. M., Garg, S., and Esen, N. (2005) Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess, Infect. Immun., 73, 7428-7435, https://doi.org/10.1128/IAI.73.11.7428-7435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohgi, K., Kajiya, H., Goto-T, K., Okamoto, F., Yoshinaga, Y., Okabe, K., and Sakagami, R. (2018) Toll-like receptor 2 activation primes and upregulates osteoclastogenesis via lox-1, Lipids Health Dis., 17, 132, https://doi.org/10.1186/s12944-018-0787-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, W.-J., Ou, H.-C., Hsu, W.-C., Chou, M.-M., Tseng, J.-J., Hsu, S.-L., Tsai, K.-L., and Sheu, W. H.-S. (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells, J. Vasc. Surg., 52, 1290-1300,  https://doi.org/10.1016/j.jvs.2010.04.085.

    Article  PubMed  Google Scholar 

  53. Chan, S. H., Hung, C. H., Shih, J. Y., Chu, P. M., Cheng, Y. H., Lin, H. C., Hsieh, P. L., and Tsai, K. L. (2018) Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling, Redox Biol., 14, 116-125, https://doi.org/10.1016/j.redox.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, R., Ma, X., Xie, X., and Shen, G. X. (2009) Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells, Am. J. Physiol. Endocrinol. Metab., 297, E104-E111, https://doi.org/10.1152/ajpendo.91023.2008.

    Article  CAS  PubMed  Google Scholar 

  55. Furman, C., Martin-Nizard, F., Fruchart, J. C., Duriez, P., and Teissier, E. (1999) Differential toxicities of air (mO-LDL) or copper-oxidized LDLs (Cu-LDL) toward endothelial cells, J. Biochem. Mol. Toxicol., 13, 316-323, https://doi.org/10.1002/(sici)1099-0461(1999)13:6<316::aid-jbt5>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  56. Sangle, G. V., Zhao, R., and Shen, G. X. (2008) Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells, Am. J. Physiol. Endocrinol. Metab., 295, E1243-E1254, https://doi.org/10.1152/ajpendo.90415.2008.

    Article  CAS  PubMed  Google Scholar 

  57. Galvani, S., Coatrieux, C., Elbaz, M., Grazide, M. H., Thiers, J. C., Parini, A., Uchida, K., Kamar, N., Rostaing, L., Baltas, M., Salvayre, R., and Nègre-Salvayre, A. (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives, Free. Radic. Biol. Med., 45, 1457-1467, https://doi.org/10.1016/j.freeradbiomed.2008.08.026.

    Article  CAS  PubMed  Google Scholar 

  58. Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Nègre-Salvayre, A., and Baltas, M. (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family, Eur. J. Med. Chem., 45, 3019-3026, https://doi.org/10.1016/j.ejmech.2Yla-HerttualaL010.03.031.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 22-15-00013).

Author information

Authors and Affiliations

Authors

Contributions

V.Z.L. supervision of the study, writing the paper, discussion of the results; M.G.S. conducting molecular biological investigation, writing of the paper, discussion of the results, analysis of the literature; A.K.T. participation in writing and editing of the paper; R.G.G. conducting molecular biological investigation; O.A.A. preparation of the primary culture and cultivation of HUVECs; G.G.K. isolation of LDLs and preparation of dicarbonyl-modified LDLs; V.I.N. participation in writing and discussion of the paper.

Corresponding author

Correspondence to Mars G. Sharapov.

Ethics declarations

The authors declare no conflicts of interests in financial or any other spheres. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lankin, V.Z., Sharapov, M.G., Tikhaze, A.K. et al. Dicarbonyl-Modified Low-Density Lipoproteins Are Key Inducers of LOX-1 and NOX1 Gene Expression in the Cultured Human Umbilical Vein Endotheliocytes. Biochemistry Moscow 88, 2125–2136 (2023). https://doi.org/10.1134/S0006297923120143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120143

Keywords

Navigation