Skip to main content
Log in

Serotonin Receptors as a Potential Target in the Treatment of Alzheimer’s Disease

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid

AD:

Alzheimer’s disease

5-HT:

serotonin

APP:

amyloid precursor protein

CaM:

calmodulin

CDK5:

cyclin-dependent kinase 5

ERK1/2:

extracellular signal-regulated kinases 1/2

Fyn:

proto-oncogene tyrosine protein kinase Fyn

GIP:

GPCR-interacting protein

GPCR:

G protein-coupled receptor

GRK5:

G protein-coupled receptor kinase 5

CRMR2:

collapsin response mediator protein 2

GSK-3β:

glycogen synthase kinase-3 beta

LTP:

long-term potentiation

PKA:

protein kinase A

PSD-95:

postsynaptic density protein 95

PTEN:

phosphatase and tensin homolog

sAPPα:

soluble amyloid precursor protein

SAP97:

synapse-associated protein 97

References

  1. Querfurth, H. W., and LaFerla, F. M. (2010) Alzheimer's disease, New Eng. J. Med., 362, 329-344, https://doi.org/10.1056/NEJMra0909142.

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe, D. J., American College of, P., and American Physiological, S. (2004) Alzheimer disease: mechanistic understanding predicts novel therapies, Ann. Int. Med., 140, 627-638, https://doi.org/10.7326/0003-4819-140-8-200404200-00047.

    Article  CAS  PubMed  Google Scholar 

  3. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., and Nair, M. (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics, Int. J. Nanomed., 14, 5541-5554, https://doi.org/10.2147/IJN.S200490.

    Article  CAS  Google Scholar 

  4. Cacace, R., Sleegers, K., and Van Broeckhoven, C. (2016) Molecular genetics of early-onset Alzheimer’s disease revisited, Alzheimers Dement., 12, 733-748, https://doi.org/10.1016/j.jalz.2016.01.012.

    Article  PubMed  Google Scholar 

  5. Bettens, K., Sleegers, K., and Van Broeckhoven, C. (2010) Current status on Alzheimer’s disease molecular genetics: from past, to present, to future, Human Mol. Genet., 19, R4-R11, https://doi.org/10.1093/hmg/ddq142.

    Article  CAS  Google Scholar 

  6. Atri, A., Goldfarb, D., Sheard, S., and Shaughnessy, L. (2019) Current and emerging solutions to challenges in the management of Alzheimer's disease, J. Clin. Psychiatry, 80, 6, https://doi.org/10.4088/JCP.MS18002AH3C.

    Article  Google Scholar 

  7. Pollock, N. J., Mirra, S. S., Binder, L. I., Hansen, L. A., and Wood, J. G. (1986) Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau, Lancet, 2, 1211, https://doi.org/10.1016/s0140-6736(86)92212-9.

    Article  CAS  PubMed  Google Scholar 

  8. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder, L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 83, 4913-4917, https://doi.org/10.1073/pnas.83.13.4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 83, 4044-4048, https://doi.org/10.1073/pnas.83.11.4044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brion, J. P., Couck, A. M., Passareiro, E., and Flament-Durand, J. (1985) Neurofibrillary tangles of Alzheimer's disease: an immunohistochemical study, J. Submicrosc. Cytol., 17, 89-96.

    CAS  PubMed  Google Scholar 

  11. Glenner, G. G., and Wong, C. W. (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 122, 1131-1135, https://doi.org/10.1016/0006-291x(84)91209-9.

    Article  CAS  PubMed  Google Scholar 

  12. Quiedeville, A., Boulouard, M., Hamidouche, K., Da Silva Costa-Aze, V., Nee, G., Rochais, C., Dallemagne, P., Fabis, F., Freret, T., and Bouet, V. (2015) Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances, Behav. Brain Res., 293, 10-17, https://doi.org/10.1016/j.bbr.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  13. Jahreis, K., Bruge, A., Borsdorf, S., Muller, F. E., Sun, W., Jia, S., Kang, D. M., Boesen, N., Shin, S., Lim, S., Koroleva, A., Satala, G., Bojarski, A. J., Rakusa, E., Fink, A., Doblhammer-Reiter, G., Kim, Y. K., Dityatev, A., Ponimaskin, E., and Labus, J. (2023) Amisulpride as a potential disease-modifying drug in the treatment of tauopathies, Alzheimers Dement., https://doi.org/10.1002/alz.13090.

    Article  PubMed  Google Scholar 

  14. Kucwaj-Brysz, K., Baltrukevich, H., Czarnota, K., and Handzlik, J. (2021) Chemical update on the potential for serotonin 5-HT6 and 5-HT7 receptor agents in the treatment of Alzheimer's disease, Bioorg. Med. Chem. Lett., 49, 128275, https://doi.org/10.1016/j.bmcl.2021.128275.

    Article  CAS  PubMed  Google Scholar 

  15. Paroni, G., Bisceglia, P., and Seripa, D. (2019) Understanding the amyloid hypothesis in Alzheimer's disease, J. Alzheimer's Dis., 68, 493-510, https://doi.org/10.3233/JAD-180802.

    Article  CAS  Google Scholar 

  16. Kametani, F., and Hasegawa, M. (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease, Front. Neurosci., 12, 25, https://doi.org/10.3389/fnins.2018.00025.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ricciarelli, R., and Fedele, E. (2017) The amyloid cascade hypothesis in Alzheimer's disease: it's time to change our mind, Curr. Neuropharmacol., 15, 926-935, https://doi.org/10.2174/1570159X15666170116143743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Mol. Med., 8, 595-608, https://doi.org/10.15252/emmm.201606210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, H., and Zheng, Y. (2019) β amyloid hypothesis in Alzheimer's disease: pathogenesis, prevention, and management, Acad. Med. Sin., 41, 702-708, https://doi.org/10.3881/j.issn.1000-503X.10875.

    Article  Google Scholar 

  20. Jang, S. S., and Chung, H. J. (2016) Emerging link between Alzheimer's disease and homeostatic synaptic plasticity, Neural Plasticity, 2016, 7969272, https://doi.org/10.1155/2016/7969272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E. R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., Hamilton-Nelson, K. L., Moreno-Grau, S., Olaso, R., et al. (2019) Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing, Nat. Genet., 51, 414-430, https://doi.org/10.1038/s41588-019-0358-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bis, J. C., Jian, X., Kunkle, B. W., Chen, Y., Hamilton-Nelson, K. L., Bush, W. S., Salerno, W. J., Lancour, D., Ma, Y., Renton, A. E., Marcora, E., Farrell, J. J., Zhao, Y., Qu, L., Ahmad, S., Amin, N., Amouyel, P., Beecham, G. W., Below, J. E., Campion, D., et al. (2020) Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation, Mol. Psychiatry, 25, 1859-1875, https://doi.org/10.1038/s41380-018-0112-7.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, D. K., Choi, S. H., Washicosky, K. J., Eimer, W. A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L. E., Tanzi, R. E., and Moir, R. D. (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease, Sci. Transl. Med., 8, 340ra372, https://doi.org/10.1126/scitranslmed.aaf1059.

    Article  CAS  Google Scholar 

  24. Li, N. M., Liu, K. F., Qiu, Y. J., Zhang, H. H., Nakanishi, H., and Qing, H. (2019) Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis, Neural Regener. Res., 14, 658-665, https://doi.org/10.4103/1673-5374.247469.

    Article  CAS  Google Scholar 

  25. Tcw, J., and Goate, A. M. (2017) Genetics of β-amyloid precursor protein in Alzheimer's disease, Cold Spring Harb. Perspect. Med., 7, a024539, https://doi.org/10.1101/cshperspect.a024539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maitra, S., and Vincent, B. (2022) Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: mechanisms and possible therapeutic interventions, Life Sci., 308, 120986, https://doi.org/10.1016/j.lfs.2022.120986.

    Article  CAS  PubMed  Google Scholar 

  27. Breijyeh, Z., and Karaman, R. (2020) Comprehensive review on Alzheimer's disease: causes and treatment, Molecules, 25, 5789, https://doi.org/10.3390/molecules25245789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Avila, J., Lucas, J. J., Perez, M., and Hernandez, F. (2004) Role of tau protein in both physiological and pathological conditions, Physiol. Rev., 84, 361-384, https://doi.org/10.1152/physrev.00024.2003.

    Article  CAS  PubMed  Google Scholar 

  29. Jouanne, M., Rault, S., and Voisin-Chiret, A. S. (2017) Tau protein aggregation in Alzheimer's disease: an attractive target for the development of novel therapeutic agents, Eur. J. Med. Chem., 139, 153-167, https://doi.org/10.1016/j.ejmech.2017.07.070.

    Article  CAS  PubMed  Google Scholar 

  30. Ganguly, P., Do, T. D., Larini, L., LaPointe, N. E., Sercel, A. J., Shade, M. F., Feinstein, S. C., Bowers, M. T., and Shea, J. E. (2015) Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3, J. Phys. Chem. B, 119, 4582-4593, https://doi.org/10.1021/acs.jpcb.5b00175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M. L., Yardin, C., and Terro, F. (2013) Tau protein kinases: involvement in Alzheimer's disease, Ageing Res. Rev., 12, 289-309, https://doi.org/10.1016/j.arr.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  32. Tapia-Rojas, C., Cabezas-Opazo, F., Deaton, C. A., Vergara, E. H., Johnson, G. V. W., and Quintanilla, R. A. (2019) It’s all about tau, Progress Neurobiol., 175, 54-76, https://doi.org/10.1016/j.pneurobio.2018.12.005.

    Article  CAS  Google Scholar 

  33. Ando, K., Oka, M., Ohtake, Y., Hayashishita, M., Shimizu, S., Hisanaga, S., and Iijima, K. M. (2016) Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated, Biochem. Biophys. Res. Commun., 478, 929-934, https://doi.org/10.1016/j.bbrc.2016.08.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dickey, C. A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R. M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C. B., Patterson, C., Dickson, D. W., Nahman, N. S. Jr., Hutton, M., Burrows, F., and Petrucelli, L. (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins, J. Clin. Invest., 117, 648-658, https://doi.org/10.1172/JCI29715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E., and Mandelkow, E. M. (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry, 38, 3549-3558, https://doi.org/10.1021/bi981874p.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., and Mandelkow, E. (2016) Tau in physiology and pathology, Nat. Rev. Neurosci., 17, 5-21, https://doi.org/10.1038/nrn.2015.1.

    Article  CAS  PubMed  Google Scholar 

  37. Morsch, R., Simon, W., and Coleman, P. D. (1999) Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 58, 188-197, https://doi.org/10.1097/00005072-199902000-00008.

    Article  CAS  PubMed  Google Scholar 

  38. Labus, J., Rohrs, K. F., Ackmann, J., Varbanov, H., Muller, F. E., Jia, S., Jahreis, K., Vollbrecht, A. L., Butzlaff, M., Schill, Y., Guseva, D., Bohm, K., Kaushik, R., Bijata, M., Marin, P., Chaumont-Dubel, S., Zeug, A., Dityatev, A., and Ponimaskin, E. (2021) Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor, Progr. Neurobiol., 197, 101900, https://doi.org/10.1016/j.pneurobio.2020.101900.

    Article  CAS  Google Scholar 

  39. Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., and Tolnay, M. (2009) Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 11, 909-913, https://doi.org/10.1038/ncb1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolarova, M., Garcia-Sierra, F., Bartos, A., Ricny, J., and Ripova, D. (2012) Structure and pathology of tau protein in Alzheimer’s disease, Int. J. Alzheimer's Dis., 2012, 731526, https://doi.org/10.1155/2012/731526.

    Article  CAS  Google Scholar 

  41. Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K., and Imahori, K. (1996) Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta, Neurosci. Lett., 203, 33-36, https://doi.org/10.1016/0304-3940(95)12257-5.

    Article  CAS  PubMed  Google Scholar 

  42. Costa, L., Tempio, A., Lacivita, E., Leopoldo, M., and Ciranna, L. (2021) Serotonin 5-HT7 receptors require cyclin-dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X syndrome, Eur. J. Neurosci., 54, 4124-4132, https://doi.org/10.1111/ejn.15246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shukla, V., Skuntz, S., and Pant, H. C. (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer's disease, Arch. Med. Res., 43, 655-662, https://doi.org/10.1016/j.arcmed.2012.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., and Tsai, L. H. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles, Neuron, 40, 471-483, https://doi.org/10.1016/s0896-6273(03)00627-5.

    Article  CAS  PubMed  Google Scholar 

  45. Simic, G., Babic Leko, M., Wray, S., Harrington, C. R., Delalle, I., Jovanov-Milosevic, N., Bazadona, D., Buee, L., de Silva, R., Di Giovanni, G., Wischik, C. M., and Hof, P. R. (2017) Monoaminergic neuropathology in Alzheimer's disease, Progr. Neurobiol., 151, 101-138, https://doi.org/10.1016/j.pneurobio.2016.04.001.

    Article  CAS  Google Scholar 

  46. Morgese, M. G., and Trabace, L. (2019) Monoaminergic system modulation in depression and Alzheimer's disease: a new standpoint? Front. Pharmacol., 10, 483, https://doi.org/10.3389/fphar.2019.00483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murley, A. G., and Rowe, J. B. (2018) Neurotransmitter deficits from frontotemporal lobar degeneration, Brain J. Neurol., 141, 1263-1285, https://doi.org/10.1093/brain/awx327.

    Article  Google Scholar 

  48. Huey, E. D., Putnam, K. T., and Grafman, J. (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia, Neurology, 66, 17-22, https://doi.org/10.1212/01.wnl.0000191304.55196.4d.

    Article  CAS  PubMed  Google Scholar 

  49. Mufson, E. J., Kelley, C., and Perez, S. E. (2021) Chronic traumatic encephalopathy and the nucleus basalis of Meynert, Handbook Clin. Neurol., 182, 9-29, https://doi.org/10.1016/B978-0-12-819973-2.00002-2.

    Article  Google Scholar 

  50. Vertes, R. P., Fortin, W. J., and Crane, A. M. (1999) Projections of the median raphe nucleus in the rat, J. Compar. Neurol., 407, 555-582, https://doi.org/10.1002/(SICI)1096-9861(19990517)407:4<555::AID-CNE7>3.0.CO;2-E.

    Article  CAS  Google Scholar 

  51. Vertes, R. P. (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat, J. Compar. Neurol., 313, 643-668, https://doi.org/10.1002/cne.903130409.

    Article  CAS  Google Scholar 

  52. Audet, M. A., Descarries, L., and Doucet, G. (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex, J. Chem. Neuroanat., 2, 29-44.

    CAS  PubMed  Google Scholar 

  53. Rodriguez, J. J., Noristani, H. N., and Verkhratsky, A. (2012) The serotonergic system in ageing and Alzheimer's disease, Progr. Neurobiol., 99, 15-41, https://doi.org/10.1016/j.pneurobio.2012.06.010.

    Article  CAS  Google Scholar 

  54. Jankowska, A., Wesolowska, A., Pawlowski, M., and Chlon-Rzepa, G. (2018) Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer's disease therapy: advances in chemical and biological research, Curr. Med. Chem., 25, 2045-2067, https://doi.org/10.2174/0929867324666170529122802.

    Article  CAS  PubMed  Google Scholar 

  55. Tajeddinn, W., Persson, T., Calvo-Garrido, J., Seed Ahmed, M., Maioli, S., Vijayaraghavan, S., Kazokoglu, M. S., Parrado-Fernandez, C., Yoshitake, T., Kehr, J., Francis, P., Winblad, B., Hoglund, K., Cedazo-Minguez, A., and Aarsland, D. (2016) Pharmacological modulations of the serotonergic system in a cell-model of familial Alzheimer's disease, J. Alzheimer's Dis., 53, 349-361, https://doi.org/10.3233/JAD-160046.

    Article  CAS  Google Scholar 

  56. Lyness, S. A., Zarow, C., and Chui, H. C. (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis, Neurobiol. Aging, 24, 1-23, https://doi.org/10.1016/s0197-4580(02)00057-x.

    Article  CAS  PubMed  Google Scholar 

  57. Aletrino, M. A., Vogels, O. J., Van Domburg, P. H., and Ten Donkelaar, H. J. (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer's disease, Neurobiol. Aging, 13, 461-468, https://doi.org/10.1016/0197-4580(92)90073-7.

    Article  CAS  PubMed  Google Scholar 

  58. Thomas, A. J., Hendriksen, M., Piggott, M., Ferrier, I. N., Perry, E., Ince, P., and O'Brien, J. T. (2006) A study of the serotonin transporter in the prefrontal cortex in late-life depression and Alzheimer's disease with and without depression, Neuropathol. Appl. Neurobiol., 32, 296-303, https://doi.org/10.1111/j.1365-2990.2006.00728.x.

    Article  CAS  PubMed  Google Scholar 

  59. Palmer, A. M., Francis, P. T., Bowen, D. M., Benton, J. S., Neary, D., Mann, D. M., and Snowden, J. S. (1987) Catecholaminergic neurones assessed ante-mortem in Alzheimer's disease, Brain Res., 414, 365-375, https://doi.org/10.1016/0006-8993(87)90018-7.

    Article  CAS  PubMed  Google Scholar 

  60. Palmer, A. M., Wilcock, G. K., Esiri, M. M., Francis, P. T., and Bowen, D. M. (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer's disease, Brain Res., 401, 231-238, https://doi.org/10.1016/0006-8993(87)91408-9.

    Article  CAS  PubMed  Google Scholar 

  61. Palmer, A. M., Francis, P. T., Benton, J. S., Sims, N. R., Mann, D. M., Neary, D., Snowden, J. S., and Bowen, D. M. (1987) Presynaptic serotonergic dysfunction in patients with Alzheimer's disease, J. Neurochem., 48, 8-15, https://doi.org/10.1111/j.1471-4159.1987.tb13120.x.

    Article  CAS  PubMed  Google Scholar 

  62. Tajeddinn, W., Fereshtehnejad, S. M., Seed Ahmed, M., Yoshitake, T., Kehr, J., Shahnaz, T., Milovanovic, M., Behbahani, H., Hoglund, K., Winblad, B., Cedazo-Minguez, A., Jelic, V., Jaremo, P., and Aarsland, D. (2016) Association of platelet serotonin levels in Alzheimer's disease with clinical and cerebrospinal fluid markers, J. Alzheimer's Dis., 53, 621-630, https://doi.org/10.3233/JAD-160022.

    Article  CAS  Google Scholar 

  63. Prokselj, T., Jerin, A., Muck-Seler, D., and Kogoj, A. (2014) Decreased platelet serotonin concentration in Alzheimer's disease with involuntary emotional expression disorder, Neurosci. Lett., 578, 71-74, https://doi.org/10.1016/j.neulet.2014.06.034.

    Article  CAS  PubMed  Google Scholar 

  64. Ehrhardt, S., Porsteinsson, A. P., Munro, C. A., Rosenberg, P. B., Pollock, B. G., Devanand, D. P., Mintzer, J., Rajji, T. K., Ismail, Z., Schneider, L. S., Baksh, S. N., Drye, L. T., Avramopoulos, D., Shade, D. M., Lyketsos, C. G., and Group, S. C. R. (2019) Escitalopram for agitation in Alzheimer's disease (S-CitAD): Methods and design of an investigator-initiated, randomized, controlled, multicenter clinical trial, Alzheimers Dement., 15, 1427-1436, https://doi.org/10.1016/j.jalz.2019.06.4946.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Porsteinsson, A. P., Keltz, M. A., and Smith, J. S. (2014) Role of citalopram in the treatment of agitation in Alzheimer's disease, Neurodegener. Dis. Management., 4, 345-349, https://doi.org/10.2217/nmt.14.35.

    Article  Google Scholar 

  66. Porsteinsson, A. P., Drye, L. T., Pollock, B. G., Devanand, D. P., Frangakis, C., Ismail, Z., Marano, C., Meinert, C. L., Mintzer, J. E., Munro, C. A., Pelton, G., Rabins, P. V., Rosenberg, P. B., Schneider, L. S., Shade, D. M., Weintraub, D., Yesavage, J., and Lyketsos, C. G. for the CitAD Re­search Group (2014) Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial, Jama, 311, 682-691, https://doi.org/10.1001/jama.2014.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie, Y., Liu, P. P., Lian, Y. J., Liu, H. B., and Kang, J. S. (2019) The effect of selective serotonin reuptake inhibitors on cognitive function in patients with Alzheimer's disease and vascular dementia: focusing on fluoxetine with long follow-up periods, Signal Transduct. Target. Ther., 4, 30, https://doi.org/10.1038/s41392-019-0064-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharp, T., and Barnes, N. M. (2020) Central 5-HT receptors and their function; present and future, Neuropharmacology, 177, 108155, https://doi.org/10.1016/j.neuropharm.2020.108155.

    Article  CAS  PubMed  Google Scholar 

  69. Humphrey, P. P., and Barnard, E. A. (1998) International Union of Pharmacology. XIX. The IUPHAR receptor code: a proposal for an alphanumeric classification system, Pharmacol. Rev., 50, 271-277.

    CAS  PubMed  Google Scholar 

  70. Pauwels, P. J. (2000) Diverse signalling by 5-hydroxytryptamine (5-HT) receptors, Biochem. Pharmacol., 60, 1743-1750, https://doi.org/10.1016/s0006-2952(00)00476-7.

    Article  CAS  PubMed  Google Scholar 

  71. Rojas, P. S., Aguayo, F., Neira, D., Tejos, M., Aliaga, E., Munoz, J. P., Parra, C. S., and Fiedler, J. L. (2017) Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors, Mol. Cell. Neurosci., 85, 148-161, https://doi.org/10.1016/j.mcn.2017.09.009.

    Article  CAS  PubMed  Google Scholar 

  72. Papoucheva, E., Dumuis, A., Sebben, M., Richter, D. W., and Ponimaskin, E. G. (2004) The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein, J. Biol. Chem., 279, 3280-3291, https://doi.org/10.1074/jbc.M308177200.

    Article  CAS  PubMed  Google Scholar 

  73. Barnes, N. M., and Sharp, T. (1999) A review of central 5-HT receptors and their function, Neuropharmacology, 38, 1083-1152, https://doi.org/10.1016/S0028-3908(99)00010-6.

    Article  CAS  PubMed  Google Scholar 

  74. Albert, P. R., and Vahid-Ansari, F. (2019) The 5-HT1A receptor: signaling to behavior, Biochimie, 161, 34-45, https://doi.org/10.1016/j.biochi.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  75. Ogren, S. O., Eriksson, T. M., Elvander-Tottie, E., D'Addario, C., Ekstrom, J. C., Svenningsson, P., Meister, B., Kehr, J., and Stiedl, O. (2008) The role of 5-HT1A receptors in learning and memory, Behav. Brain Res., 195, 54-77, https://doi.org/10.1016/j.bbr.2008.02.023.

    Article  CAS  PubMed  Google Scholar 

  76. Carhart-Harris, R. L., and Nutt, D. J. (2017) Serotonin and brain function: a tale of two receptors, J. Psychopharmacol., 31, 1091-1120, https://doi.org/10.1177/0269881117725915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verdurand, M., Chauveau, F., Daoust, A., Morel, A. L., Bonnefoi, F., Liger, F., Berod, A., and Zimmer, L. (2016) Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain, Neurobiol. Aging, 40, 11-21, https://doi.org/10.1016/j.neurobiolaging.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  78. Verdurand, M., Berod, A., Le Bars, D., and Zimmer, L. (2011) Effects of amyloid-beta peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus, Neurobiol. Aging, 32, 103-114, https://doi.org/10.1016/j.neurobiolaging.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  79. Afshar, S., Shahidi, S., Rohani, A. H., Komaki, A., and Asl, S. S. (2018) The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats, Psychopharmacology (Berl), 235, 2809-2822, https://doi.org/10.1007/s00213-018-4973-x.

    Article  CAS  PubMed  Google Scholar 

  80. Afshar, S., Shahidi, S., Rohani, A. H., Soleimani Asl, S., and Komaki, A. (2019) Protective effects of 5-HT1A receptor antagonist and 5-HT2A receptor agonist on the biochemical and histological features in a rat model of Alzheimer's disease, J. Chem. Neuroanat., 96, 140-147, https://doi.org/10.1016/j.jchemneu.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, M., Zong, H. F., Chang, K. W., Han, H., Yasir Rizvi, M., Iffat Neha, S., Li, Z. Y., Yang, W. N., and Qian, Y. H. (2020) 5-HT1AR alleviates Aβ-induced cognitive decline and neuroinflammation through crosstalk with NF-κB pathway in mice, Int. Immunopharmacol., 82, 106354, https://doi.org/10.1016/j.intimp.2020.106354.

    Article  CAS  PubMed  Google Scholar 

  82. Shruster, A., and Offen, D. (2014) Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer's disease, Behav. Brain Res., 261, 193-201, https://doi.org/10.1016/j.bbr.2013.12.028.

    Article  PubMed  Google Scholar 

  83. Wang, Y. J., Ren, Q. G., Gong, W. G., Wu, D., Tang, X., Li, X. L., Wu, F. F., Bai, F., Xu, L., and Zhang, Z. J. (2016) Escitalopram attenuates beta-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3beta pathway, Oncotarget, 7, 13328-13339, https://doi.org/10.18632/oncotarget.7798.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ren, Q. G., Wang, Y. J., Gong, W. G., Zhou, Q. D., Xu, L., and Zhang, Z. J. (2015) Escitalopram ameliorates forskolin-induced tau hyperphosphorylation in HEK239/tau441 cells, J. Mol. Neurosci., 56, 500-508, https://doi.org/10.1007/s12031-015-0519-4.

    Article  CAS  PubMed  Google Scholar 

  85. Park, Y. S., and Sung, K. W. (2019) Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells, Korean J. Physiol. Pharmacol., 23, 509-517, https://doi.org/10.4196/kjpp.2019.23.6.509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Werner, F. M., and Covenas, R. (2016) Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer's disease, Curr. Pharmaceut. Design, 22, 2064-2071, https://doi.org/10.2174/1381612822666160127113524.

    Article  CAS  Google Scholar 

  87. Odagaki, Y., Kinoshita, M., Ota, T., Javier Meana, J., Callado, L. F., and Garcia-Sevilla, J. A. (2017) Functional activation of Gαq coupled to 5-HT2A receptor and M1 muscarinic acetylcholine receptor in postmortem human cortical membranes, J. Neural Transm., 124, 1123-1133, https://doi.org/10.1007/s00702-017-1749-0.

    Article  CAS  PubMed  Google Scholar 

  88. Zifa, E., and Fillion, G. (1992) 5-Hydroxytryptamine receptors, Pharmacol. Rev., 44, 401-458.

    CAS  PubMed  Google Scholar 

  89. Blin, J., Baron, J. C., Dubois, B., Crouzel, C., Fiorelli, M., Attar-Levy, D., Pillon, B., Fournier, D., Vidailhet, M., and Agid, Y. (1993) Loss of brain 5-HT2 receptors in Alzheimer's disease. In vivo assessment with positron emission tomography and [18F]setoperone, Brain, 116, 497-510, https://doi.org/10.1093/brain/116.3.497.

    Article  PubMed  Google Scholar 

  90. Holm, P., Ettrup, A., Klein, A. B., Santini, M. A., El-Sayed, M., Elvang, A. B., Stensbol, T. B., Mikkelsen, J. D., Knudsen, G. M., and Aznar, S. (2010) Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice, J. Alzheimer's Dis., 20, 1201-1213, https://doi.org/10.3233/JAD-2010-100117.

    Article  CAS  Google Scholar 

  91. Lai, M. K., Tsang, S. W., Alder, J. T., Keene, J., Hope, T., Esiri, M. M., Francis, P. T., and Chen, C. P. (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease, Psychopharmacology (Berl), 179, 673-677, https://doi.org/10.1007/s00213-004-2077-2.

    Article  CAS  PubMed  Google Scholar 

  92. Marner, L., Frokjaer, V. G., Kalbitzer, J., Lehel, S., Madsen, K., Baare, W. F., Knudsen, G. M., and Hasselbalch, S. G. (2012) Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease: a combined [11C]DASB and [18F]altanserin-PET study, Neurobiol. Aging, 33, 479-487, https://doi.org/10.1016/j.neurobiolaging.2010.03.023.

    Article  CAS  PubMed  Google Scholar 

  93. Nitsch, R. M., Deng, M., Growdon, J. H., and Wurtman, R. J. (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion, J. Biol. Chem., 271, 4188-4194, https://doi.org/10.1074/jbc.271.8.4188.

    Article  CAS  PubMed  Google Scholar 

  94. Lu, J., Zhang, C., Lv, J., Zhu, X., Jiang, X., Lu, W., Lu, Y., Tang, Z., Wang, J., and Shen, X. (2021) Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction, Aging Cell, 20, e13286, https://doi.org/10.1111/acel.13286.

    Article  CAS  PubMed  Google Scholar 

  95. Busceti, C. L., Di Pietro, P., Riozzi, B., Traficante, A., Biagioni, F., Nistico, R., Fornai, F., Battaglia, G., Nicoletti, F., and Bruno, V. (2015) 5-HT2C serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice, Pharmacol. Res., 99, 258-268, https://doi.org/10.1016/j.phrs.2015.06.017.

    Article  CAS  PubMed  Google Scholar 

  96. Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2004) 5-HT4 receptors, Curr. Drug Targets, 3, 39-51, https://doi.org/10.2174/1568007043482615.

    Article  CAS  Google Scholar 

  97. Fisher, J. R., Wallace, C. E., Tripoli, D. L., Sheline, Y. I., and Cirrito, J. R. (2016) Redundant Gs-coupled serotonin receptors regulate amyloid-beta metabolism in vivo, Mol. Neurodegener., 11, 45, https://doi.org/10.1186/s13024-016-0112-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. King, M. V., Marsden, C. A., and Fone, K. C. (2008) A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory, Trends Pharmacol. Sci., 29, 482-492, https://doi.org/10.1016/j.tips.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  99. Rebholz, H., Friedman, E., and Castello, J. (2018) Alterations of expression of the serotonin 5-HT4 receptor in brain disorders, Int. J. Mol. Sci., 19, 3581, https://doi.org/10.3390/ijms19113581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Madsen, K., Neumann, W. J., Holst, K., Marner, L., Haahr, M. T., Lehel, S., Knudsen, G. M., and Hasselbalch, S. G. (2011) Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer's disease, J. Alzheimer's Dis., 26, 457-466, https://doi.org/10.3233/JAD-2011-110056.

    Article  CAS  Google Scholar 

  101. Baranger, K., Giannoni, P., Girard, S. D., Girot, S., Gaven, F., Stephan, D., Migliorati, M., Khrestchatisky, M., Bockaert, J., Marchetti-Gauthier, E., Rivera, S., Claeysen, S., and Roman, F. S. (2017) Chronic treatments with a 5-HT4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer’s disease, Neuropharmacology, 126, 128-141, https://doi.org/10.1016/j.neuropharm.2017.08.031.

    Article  CAS  PubMed  Google Scholar 

  102. Lecoutey, C., Hedou, D., Freret, T., Giannoni, P., Gaven, F., Since, M., Bouet, V., Ballandonne, C., Corvaisier, S., Malzert Freon, A., Mignani, S., Cresteil, T., Boulouard, M., Claeysen, S., Rochais, C., and Dallemagne, P. (2014) Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment, Proc. Natl. Acad. Sci. USA, 111, E3825-3830, https://doi.org/10.1073/pnas.1410315111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lalut, J., Karila, D., Dallemagne, P., and Rochais, C. (2017) Modulating 5-HT4 and 5-HT6 receptors in Alzheimer's disease treatment, Fut. Med. Chem., 9, 781-795, https://doi.org/10.4155/fmc-2017-0031.

    Article  CAS  Google Scholar 

  104. Nirogi, R., Mohammed, A. R., Shinde, A. K., Gagginapally, S. R., Kancharla, D. M., Ravella, S. R., Bogaraju, N., Middekadi, V. R., Subramanian, R., Palacharla, R. C., Benade, V., Muddana, N., Abraham, R., Medapati, R. B., Thentu, J. B., Mekala, V. R., Petlu, S., Lingavarapu, B. B., Yarra, S., Kagita, N., et al. (2021) Discovery and Preclinical Characterization of Usmarapride (SUVN-D4010): A potent, selective 5-HT4 receptor partial agonist for the treatment of cognitive deficits associated with Alzheimer's disease, J. Med. Chem., 64, 10641-10665, https://doi.org/10.1021/acs.jmedchem.1c00703.

    Article  CAS  PubMed  Google Scholar 

  105. Wichur, T., Pasieka, A., Godyn, J., Panek, D., Goral, I., Latacz, G., Honkisz-Orzechowska, E., Bucki, A., Siwek, A., Gluch-Lutwin, M., Knez, D., Brazzolotto, X., Gobec, S., Kolaczkowski, M., Sabate, R., Malawska, B., and Wieckowska, A. (2021) Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau, Eur. J. Med. Chem., 225, 113783, https://doi.org/10.1016/j.ejmech.2021.113783.

    Article  CAS  PubMed  Google Scholar 

  106. Hashemi-Firouzi, N., Shahidi, S., Soleimani-Asl, S., and Komaki, A. (2018) 5-Hydroxytryptamine receptor 6 antagonist, SB258585 exerts neuroprotection in a rat model of Streptozotocin-induced Alzheimer's disease, Metab. Brain Dis., 33, 1243-1253, https://doi.org/10.1007/s11011-018-0228-0.

    Article  CAS  PubMed  Google Scholar 

  107. Ivachtchenko, A. V., Lavrovsky, Y., and Okun, I. (2016) AVN-101: a multi-target drug candidate for the treatment of CNS disorders, J. Alzheimer's Dis., 53, 583-620, https://doi.org/10.3233/JAD-151146.

    Article  CAS  Google Scholar 

  108. Ivachtchenko, A. V., Lavrovsky, Y., and Ivanenkov, Y. A. (2016) AVN-211, novel and highly selective 5-HT6 receptor small molecule antagonist, for the treatment of Alzheimer's disease, Mol. Pharmaceut., 13, 945-963, https://doi.org/10.1021/acs.molpharmaceut.5b00830.

    Article  CAS  Google Scholar 

  109. Meneses, A. (2017) Neural activity, memory, and dementias: serotonergic markers, Behav. Pharmacol., 28, 132-141, https://doi.org/10.1097/FBP.0000000000000279.

    Article  CAS  PubMed  Google Scholar 

  110. Crews, L., and Masliah, E. (2010) Molecular mechanisms of neurodegeneration in Alzheimer's disease, Human Mol. Genet., 19, R12-R20, https://doi.org/10.1093/hmg/ddq160.

    Article  CAS  Google Scholar 

  111. Lee, J., Avramets, D., Jeon, B., and Choo, H. (2021) Modulation of serotonin receptors in neurodevelopmental disorders: focus on 5-HT7 receptor, Molecules, 26, 3348 https://doi.org/10.3390/molecules26113348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Solas, M., Van Dam, D., Janssens, J., Ocariz, U., Vermeiren, Y., De Deyn, P. P., and Ramirez, M. J. (2021) 5-HT7 receptors in Alzheimer's disease, Neurochem. Int., 150, 105185, https://doi.org/10.1016/j.neuint.2021.105185.

    Article  CAS  PubMed  Google Scholar 

  113. Hedlund, P. B. (2009) The 5-HT7 receptor and disorders of the nervous system: an overview, Psychopharmacology (Berl), 206, 345-354, https://doi.org/10.1007/s00213-009-1626-0.

    Article  CAS  PubMed  Google Scholar 

  114. Naumenko, V. S., Kondaurova, E. M., and Popova, N. K. (2011) On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor, Neuropharmacology, 61, 1360-1365, https://doi.org/10.1016/j.neuropharm.2011.08.022.

    Article  CAS  PubMed  Google Scholar 

  115. Rodnyy, A. Y., Kondaurova, E. M., Bazovkina, D. V., Kulikova, E. A., Ilchibaeva, T. V., Kovetskaya, A. I., Baraboshkina, I. A., Bazhenova, E. Y., Popova, N. K., and Naumenko, V. S. (2022) Serotonin 5-HT7 receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice, J. Neurosci. Res., 100, 1506-1523, https://doi.org/10.1002/jnr.25055.

    Article  CAS  PubMed  Google Scholar 

  116. Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Frohlich, M., Doring, F., Wischmeyer, E., Richter, D. W., Neher, E., and Ponimaskin, E. G. (2012) Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking, J. Cell Sci., 125, 2486-2499, https://doi.org/10.1242/jcs.101337.

    Article  CAS  PubMed  Google Scholar 

  117. Naumenko, V. S., Popova, N. K., Lacivita, E., Leopoldo, M., and Ponimaskin, E. G. (2014) Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders, CNS Neurosci. Ther., 20, 582-590, https://doi.org/10.1111/cns.12247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Speranza, L., Labus, J., Volpicelli, F., Guseva, D., Lacivita, E., Leopoldo, M., Bellenchi, G. C., di Porzio, U., Bijata, M., Perrone-Capano, C., and Ponimaskin, E. (2017) Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons, J. Neurochem., 141, 647-661, https://doi.org/10.1111/jnc.13962.

    Article  CAS  PubMed  Google Scholar 

  119. Kvachnina, E., Liu, G., Dityatev, A., Renner, U., Dumuis, A., Richter, D. W., Dityateva, G., Schachner, M., Voyno-Yasenetskaya, T. A., and Ponimaskin, E. G. (2005) 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology, J. Neurosci., 25, 7821-7830, https://doi.org/10.1523/JNEUROSCI.1790-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hashemi-Firouzi, N., Komaki, A., Soleimani Asl, S., and Shahidi, S. (2017) The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer's disease, Brain Res. Bull., 135, 85-91, https://doi.org/10.1016/j.brainresbull.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  121. Shahidi, S., Asl, S. S., Komaki, A., and Hashemi-Firouzi, N. (2018) The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat, Psychopharmacology (Berl), 235, 1513-1525, https://doi.org/10.1007/s00213-018-4862-3.

    Article  CAS  PubMed  Google Scholar 

  122. Quintero-Villegas, A., and Valdes-Ferrer, S. I. (2019) Role of 5-HT7 receptors in the immune system in health and disease, Mol. Med., 26, 2, https://doi.org/10.1186/s10020-019-0126-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Quintero-Villegas, A., and Valdes-Ferrer, S. I. (2022) Central nervous system effects of 5-HT7 receptors: a potential target for neurodegenerative diseases, Mol. Med., 28, 70, https://doi.org/10.1186/s10020-022-00497-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cadirci, E., Halici, Z., Bayir, Y., Albayrak, A., Karakus, E., Polat, B., Unal, D., Atamanalp, S. S., Aksak, S., and Gundogdu, C. (2013) Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats, Immunobiology, 218, 1271-1283, https://doi.org/10.1016/j.imbio.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  125. Ong, Q., Guo, S., Duan, L., Zhang, K., Collier, E. A., and Cui, B. (2016) The timing of Raf/ERK and AKT activation in protecting PC12 cells against oxidative stress, PLoS One, 11, e0153487, https://doi.org/10.1371/journal.pone.0153487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Barnes, N. M., Ahern, G. P., Becamel, C., Bockaert, J., Camilleri, M., Chaumont-Dubel, S., Claeysen, S., Cunningham, K. A., Fone, K. C., Gershon, M., Di Giovanni, G., Goodfellow, N. M., Halberstadt, A. L., Hartley, R. M., Hassaine, G., Herrick-Davis, K., Hovius, R., Lacivita, E., Lambe, E. K., Leopoldo, M., et al. (2021) International union of basic and clinical pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function, Pharmacol. Rev., 73, 310-520, https://doi.org/10.1124/pr.118.015552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Khachaturian, Z. S. (1994) Calcium hypothesis of Alzheimer’s disease and brain aging, Ann. NY Acad. Sci., 747, 1-11, https://doi.org/10.1111/j.1749-6632.1994.tb44398.x.

    Article  CAS  PubMed  Google Scholar 

  128. O'Day, D. H. (2019) Alzheimer’s disease: a short introduction to the calmodulin hypothesis, AIMS Neurosci., 6, 231-239, https://doi.org/10.3934/Neuroscience.2019.4.231.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chavez, S. E., and O’Day, D. H. (2007) Calmodulin binds to and regulates the activity of beta-secretase (BACE1), in Current Research on Alzheimers Disease, Nova Science Publishers, Inc, Hauppage, NY, pp. 37-47.

  130. Cline, E. N., Bicca, M. A., Viola, K. L., and Klein, W. L. (2018) The amyloid-β oligomer hypothesis: beginning of the third decade, J. Alzheimer's Dis., 64, S567-S610, https://doi.org/10.3233/JAD-179941.

    Article  CAS  Google Scholar 

  131. Padilla, R., Maccioni, R. B., and Avila, J. (1990) Calmodulin binds to a tubulin binding site of the microtubule-associated protein tau, Mol. Cell. Biochem., 97, 35-41, https://doi.org/10.1007/BF00231699.

    Article  CAS  PubMed  Google Scholar 

  132. Lee, Y. C., and Wolff, J. (1984) Calmodulin binds to both microtubule-associated protein 2 and tau proteins, J. Biol. Chem., 259, 1226-1230, https://doi.org/10.1016/S0021-9258(17)43592-7.

    Article  CAS  PubMed  Google Scholar 

  133. Ghosh, A., and Giese, K. P. (2015) Calcium/calmodulin-dependent kinase II and Alzheimer's disease, Mol. Brain, 8, 78, https://doi.org/10.1186/s13041-015-0166-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. O'Day, D. H., Eshak, K., and Myre, M. A. (2015) Calmodulin binding proteins and Alzheimer's disease, J. Alzheimer's Dis., 46, 553-569, https://doi.org/10.3233/JAD-142772.

    Article  CAS  Google Scholar 

  135. Reese, L. C., and Taglialatela, G. (2011) A role for calcineurin in Alzheimer's disease, Current neuropharmacology, 9, 685-692, https://doi.org/10.2174/157015911798376316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Turner, J. H., Gelasco, A. K., and Raymond, J. R. (2004) Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C, J. Biol. Chem., 279, 17027-17037, https://doi.org/10.1074/jbc.M313919200.

    Article  CAS  PubMed  Google Scholar 

  137. Della Rocca, G. J., Mukhin, Y. V., Garnovskaya, M. N., Daaka, Y., Clark, G. J., Luttrell, L. M., Lefkowitz, R. J., and Raymond, J. R. (1999) Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis, J. Biol. Chem., 274, 4749-4753, https://doi.org/10.1074/jbc.274.8.4749.

    Article  CAS  PubMed  Google Scholar 

  138. Turner, J. H., and Raymond, J. R. (2005) Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C, J. Biol. Chem., 280, 30741-30750, https://doi.org/10.1074/jbc.M501696200.

    Article  CAS  PubMed  Google Scholar 

  139. Becamel, C., Figge, A., Poliak, S., Dumuis, A., Peles, E., Bockaert, J., Lubbert, H., and Ullmer, C. (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1, J. Biol. Chem., 276, 12974-12982, https://doi.org/10.1074/jbc.M008089200.

    Article  CAS  PubMed  Google Scholar 

  140. Becamel, C., Gavarini, S., Chanrion, B., Alonso, G., Galeotti, N., Dumuis, A., Bockaert, J., and Marin, P. (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins, J. Biol. Chem., 279, 20257-20266, https://doi.org/10.1074/jbc.M312106200.

    Article  CAS  PubMed  Google Scholar 

  141. Bustos, F. J., Ampuero, E., Jury, N., Aguilar, R., Falahi, F., Toledo, J., Ahumada, J., Lata, J., Cubillos, P., Henriquez, B., Guerra, M. V., Stehberg, J., Neve, R. L., Inestrosa, N. C., Wyneken, U., Fuenzalida, M., Hartel, S., Sena-Esteves, M., Varela-Nallar, L., Rots, M. G., et al. (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice, Brain, 140, 3252-3268, https://doi.org/10.1093/brain/awx272.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kamat, P. K., Kyles, P., Kalani, A., and Tyagi, N. (2016) Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood-brain barrier disruption, and synaptic disorder, Mol. Neurobiol., 53, 2451-2467, https://doi.org/10.1007/s12035-015-9212-4.

    Article  CAS  PubMed  Google Scholar 

  143. Tu, S., Okamoto, S., Lipton, S. A., and Xu, H. (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease, Mol. Neurodegener., 9, 48, https://doi.org/10.1186/1750-1326-9-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Savioz, A., Leuba, G., and Vallet, P. G. (2014) A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease, Ageing Res. Rev., 18, 86-94, https://doi.org/10.1016/j.arr.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  145. Dore, K., Carrico, Z., Alfonso, S., Marino, M., Koymans, K., Kessels, H. W., and Malinow, R. (2021) PSD-95 protects synapses from β-amyloid, Cell Rep., 35, 109194, https://doi.org/10.1016/j.celrep.2021.109194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Saraceno, C., Marcello, E., Di Marino, D., Borroni, B., Claeysen, S., Perroy, J., Padovani, A., Tramontano, A., Gardoni, F., and Di Luca, M. (2014) SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation, Cell Death Dis., 5, e1547, https://doi.org/10.1038/cddis.2014.492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Marcello, E., Gardoni, F., Mauceri, D., Romorini, S., Jeromin, A., Epis, R., Borroni, B., Cattabeni, F., Sala, C., Padovani, A., and Di Luca, M. (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity, J. Neurosci., 27, 1682-1691, https://doi.org/10.1523/JNEUROSCI.3439-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grolla, A. A., Fakhfouri, G., Balzaretti, G., Marcello, E., Gardoni, F., Canonico, P. L., DiLuca, M., Genazzani, A. A., and Lim, D. (2013) Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells, Neurobiol. Aging, 34, 511-522, https://doi.org/10.1016/j.neurobiolaging.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  149. Ji, S. P., Zhang, Y., Van Cleemput, J., Jiang, W., Liao, M., Li, L., Wan, Q., Backstrom, J. R., and Zhang, X. (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse, Nat. Med., 12, 324-329, https://doi.org/10.1038/nm1349.

    Article  CAS  PubMed  Google Scholar 

  150. Knafo, S., Sanchez-Puelles, C., Palomer, E., Delgado, I., Draffin, J. E., Mingo, J., Wahle, T., Kaleka, K., Mou, L., Pereda-Perez, I., Klosi, E., Faber, E. B., Chapman, H. M., Lozano-Montes, L., Ortega-Molina, A., Ordonez-Gutierrez, L., Wandosell, F., Vina, J., Dotti, C. G., Hall, R. A., et al. (2016) PTEN recruitment controls synaptic and cognitive function in Alzheimer's models, Nat. Neurosci., 19, 443-453, https://doi.org/10.1038/nn.4225.

    Article  CAS  PubMed  Google Scholar 

  151. Cao, F., Liu, Z., and Sun, G. (2020) Diagnostic value of miR-193a-3p in Alzheimer's disease and miR-193a-3p attenuates amyloid-beta induced neurotoxicity by targeting PTEN, Exp. Gerontol., 130, 110814, https://doi.org/10.1016/j.exger.2019.110814.

    Article  CAS  PubMed  Google Scholar 

  152. Cui, W., Wang, S., Wang, Z., Wang, Z., Sun, C., and Zhang, Y. (2017) Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in Alzheimer's disease, Neurochem. Res., 42, 3052-3060, https://doi.org/10.1007/s11064-017-2338-1.

    Article  CAS  PubMed  Google Scholar 

  153. Zeng, L., Jiang, H., Ashraf, G. M., Liu, J., Wang, L., Zhao, K., Liu, M., Li, Z., and Liu, R. (2022) Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimer's disease, Mol. Ther. Nucleic Acids, 27, 256-275, https://doi.org/10.1016/j.omtn.2021.11.019.

    Article  CAS  PubMed  Google Scholar 

  154. Coupar, I. M., Desmond, P. V., and Irving, H. R. (2007) Human 5-HT4 and 5-HT7 receptor splice variants: are they important? Curr. Neuropharmacol., 5, 224-231, https://doi.org/10.2174/157015907782793621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2008) 5-HT4 receptors: history, molecular pharmacology and brain functions, Neuropharmacology, 55, 922-931, https://doi.org/10.1016/j.neuropharm.2008.05.013.

    Article  CAS  PubMed  Google Scholar 

  156. Gill, R. K., Saksena, S., Tyagi, S., Alrefai, W. A., Malakooti, J., Sarwar, Z., Turner, J. R., Ramaswamy, K., and Dudeja, P. K. (2005) Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells, Gastroenterology, 128, 962-974, https://doi.org/10.1053/j.gastro.2005.02.011.

    Article  CAS  PubMed  Google Scholar 

  157. Dhawan, G., and Combs, C. K. (2012) Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease, J. Neuroinflamm., 9, 117, https://doi.org/10.1186/1742-2094-9-117.

    Article  CAS  Google Scholar 

  158. Nygaard, H. B., van Dyck, C. H., and Strittmatter, S. M. (2014) Fyn kinase inhibition as a novel therapy for Alzheimer's disease, Alzheimers Res. Ther., 6, 8, https://doi.org/10.1186/alzrt238.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S. F., Marin, P., Bockaert, J., Dumuis, A., and Claeysen, S. (2013) 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10, ACS Chem. Neurosci., 4, 130-140, https://doi.org/10.1021/cn300095t.

    Article  CAS  PubMed  Google Scholar 

  160. Tesseur, I., Pimenova, A. A., Lo, A. C., Ciesielska, M., Lichtenthaler, S. F., De Maeyer, J. H., Schuurkes, J. A., D’Hooge, R., and De Strooper, B. (2013) Chronic 5-HT4 receptor activation decreases Aβ production and deposition in hAPP/PS1 mice, Neurobiol. Aging, 34, 1779-1789, https://doi.org/10.1016/j.neurobiolaging.2013.01.020.

    Article  CAS  PubMed  Google Scholar 

  161. Marcello, E., Borroni, B., Pelucchi, S., Gardoni, F., and Di Luca, M. (2017) ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease, Expert Opin. Ther. Targets, 21, 1017-1026, https://doi.org/10.1080/14728222.2017.1386176.

    Article  CAS  PubMed  Google Scholar 

  162. Teixeira, J. P., and Ramalho, T. C. (2021) Regulation of protein synthesis: an approach to treat autism spectrum disorder (ASD), Curr. Med. Chem., 28, 7141-7156, https://doi.org/10.2174/0929867328666210419125634.

    Article  CAS  PubMed  Google Scholar 

  163. Suo, Z., Cox, A. A., Bartelli, N., Rasul, I., Festoff, B. W., Premont, R. T., and Arendash, G. W. (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment, Neurobiol. Aging, 28, 1873-1888, https://doi.org/10.1016/j.neurobiolaging.2006.08.013.

    Article  CAS  PubMed  Google Scholar 

  164. Zhao, J., Li, X., Chen, X., Cai, Y., Wang, Y., Sun, W., Mai, H., Yang, J., Fan, W., Tang, P., Ou, M., Zhang, Y., Huang, X., Zhao, B., and Cui, L. (2019) GRK5 influences the phosphorylation of tau via GSK3beta and contributes to Alzheimer’s disease, J. Cell. Physiol., 234, 10411-10420, https://doi.org/10.1002/jcp.27709.

    Article  CAS  PubMed  Google Scholar 

  165. Suo, W. Z., and Li, L. (2010) Dysfunction of G protein-coupled receptor kinases in Alzheimer's disease, ScientificWorldJournal, 10, 1667-1678, https://doi.org/10.1100/tsw.2010.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, Y., Zhao, J., Yin, M., Cai, Y., Liu, S., Wang, Y., Zhang, X., Cao, H., Chen, T., Huang, P., Mai, H., Liu, Z., Tao, H., Zhao, B., and Cui, L. (2017) The influence of two functional genetic variants of GRK5 on tau phosphorylation and their association with Alzheimer's disease risk, Oncotarget, 8, 72714-72726, https://doi.org/10.18632/oncotarget.20283.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhang, Y., Chen, L., Shen, G., Zhao, Q., Shangguan, L., and He, M. (2014) GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity, Neuroreport, 25, 542-547, https://doi.org/10.1097/WNR.0000000000000142.

    Article  CAS  PubMed  Google Scholar 

  168. Dudova, I., Horackova, K., Hrdlicka, M., and Balastik, M. (2020) Can maternal autoantibodies play an etiological role in ASD development? Neuropsy. Dis. Treatment, 16, 1391-1398, https://doi.org/10.2147/NDT.S239504.

    Article  Google Scholar 

  169. Ziak, J., Weissova, R., Jerabkova, K., Janikova, M., Maimon, R., Petrasek, T., Pukajova, B., Kleisnerova, M., Wang, M., Brill, M. S., Kasparek, P., Zhou, X., Alvarez-Bolado, G., Sedlacek, R., Misgeld, T., Stuchlik, A., Perlson, E., and Balastik, M. (2020) CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling, EMBO Rep., 21, e48512, https://doi.org/10.15252/embr.201948512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hensley, K., and Kursula, P. (2016) Collapsin response mediator protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer's disease: comparison and contrast with microtubule-associated protein Tau, J. Alzheimer's Dis., 53, 1-14, https://doi.org/10.3233/JAD-160076.

    Article  CAS  Google Scholar 

  171. Brustovetsky, T., Khanna, R., and Brustovetsky, N. (2023) CRMP2 participates in regulating mitochondrial morphology and motility in Alzheimer's disease, Cells, 12, 1287, https://doi.org/10.3390/cells12091287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lawal, M. F., Olotu, F. A., Agoni, C., and Soliman, M. E. (2018) Exploring the C-terminal tail dynamics: structural and molecular perspectives into the therapeutic activities of novel CRMP-2 inhibitors, naringenin and Naringenin-7-O-glucuronide, in the treatment of Alzheimer's disease, Chem. Biodivers., 15, e1800437, https://doi.org/10.1002/cbdv.201800437.

    Article  CAS  PubMed  Google Scholar 

  173. Lawal, M., Olotu, F. A., and Soliman, M. E. S. (2018) Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools, Comput. Biol. Med., 98, 168-177, https://doi.org/10.1016/j.compbiomed.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  174. Williamson, R., van Aalten, L., Mann, D. M., Platt, B., Plattner, F., Bedford, L., Mayer, J., Howlett, D., Usardi, A., Sutherland, C., and Cole, A. R. (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases, J. Alzheimer's Dis., 27, 615-625, https://doi.org/10.3233/JAD-2011-110617.

    Article  CAS  Google Scholar 

  175. Soutar, M. P., Thornhill, P., Cole, A. R., and Sutherland, C. (2009) Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development? Curr. Alzheimer Res., 6, 269-278, https://doi.org/10.2174/156720509788486572.

    Article  CAS  PubMed  Google Scholar 

  176. Joubert, L., Hanson, B., Barthet, G., Sebben, M., Claeysen, S., Hong, W., Marin, P., Dumuis, A., and Bockaert, J. (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting, J. Cell Sci., 117, 5367-5379, https://doi.org/10.1242/jcs.01379.

    Article  CAS  PubMed  Google Scholar 

  177. Ponimaskin, E. G., Profirovic, J., Vaiskunaite, R., Richter, D. W., and Voyno-Yasenetskaya, T. A. (2002) 5-Hydroxytryptamine 4(a) receptor is coupled to the Galpha subunit of heterotrimeric G13 protein, J. Biol. Chem., 277, 20812-20819, https://doi.org/10.1074/jbc.M112216200.

    Article  CAS  PubMed  Google Scholar 

  178. Duhr, F., Deleris, P., Raynaud, F., Seveno, M., Morisset-Lopez, S., Mannoury la Cour, C., Millan, M. J., Bockaert, J., Marin, P., and Chaumont-Dubel, S. (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth, Nat. Chem. Biol., 10, 590-597, https://doi.org/10.1038/nchembio.1547.

    Article  CAS  PubMed  Google Scholar 

  179. Jessberger, S., Gage, F. H., Eisch, A. J., and Lagace, D. C. (2009) Making a neuron: Cdk5 in embryonic and adult neurogenesis, Trends Neurosci., 32, 575-582, https://doi.org/10.1016/j.tins.2009.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lu, T. T., Wan, C., Yang, W., and Cai, Z. (2019) Role of Cdk5 in amyloid-beta pathology of Alzheimer's disease, Curr. Alzheimer Res., 16, 1206-1215, https://doi.org/10.2174/1567205016666191210094435.

    Article  CAS  PubMed  Google Scholar 

  181. Liu, S. L., Wang, C., Jiang, T., Tan, L., Xing, A., and Yu, J. T. (2016) The role of Cdk5 in Alzheimer's disease, Mol. Neurobiol., 53, 4328-4342, https://doi.org/10.1007/s12035-015-9369-x.

    Article  CAS  PubMed  Google Scholar 

  182. Lau, L. F., Seymour, P. A., Sanner, M. A., and Schachter, J. B. (2002) Cdk5 as a drug target for the treatment of Alzheimer's disease, J. Mol. Neurosci., 19, 267-273, https://doi.org/10.1385/JMN:19:3:267.

    Article  CAS  PubMed  Google Scholar 

  183. Yun, H. M., Kim, S., Kim, H. J., Kostenis, E., Kim, J. I., Seong, J. Y., Baik, J. H., and Rhim, H. (2007) The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn, J. Biol. Chem., 282, 5496-5505, https://doi.org/10.1074/jbc.M606215200.

    Article  CAS  PubMed  Google Scholar 

  184. Waterhouse, L. (1997) Genes tPA, Fyn, and FAK in autism? J. Autism Dev. Disord., 27, 220-223.

    CAS  PubMed  Google Scholar 

  185. Chin, J., Palop, J. J., Puolivali, J., Massaro, C., Bien-Ly, N., Gerstein, H., Scearce-Levie, K., Masliah, E., and Mucke, L. (2005) Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease, J. Neurosci., 25, 9694-9703, https://doi.org/10.1523/JNEUROSCI.2980-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li, C., and Gotz, J. (2017) Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation, EMBO J., 36, 3120-3138, https://doi.org/10.15252/embj.201797724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, K., Belrose, J., Trepanier, C. H., Lei, G., Jackson, M. F., and MacDonald, J. F. (2011) Fyn, a potential target for Alzheimer’s disease, J. Alzheimer's Dis., 27, 243-252, https://doi.org/10.3233/JAD-2011-110353.

    Article  CAS  Google Scholar 

  188. Lee, G., Thangavel, R., Sharma, V. M., Litersky, J. M., Bhaskar, K., Fang, S. M., Do, L. H., Andreadis, A., van Hoesen, G., and Ksiezak-Reding, H. (2004) Phosphorylation of tau by fyn: implications for Alzheimer's disease, J. Neurosci., 24, 2304-2312, https://doi.org/10.1523/JNEUROSCI.4162-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Liang, X., Yao, Y., Lin, Y., Kong, L., Xiao, H., Shi, Y., and Yang, J. (2019) Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells, Life Sci., 221, 35-46, https://doi.org/10.1016/j.lfs.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  190. Nygaard, H. B. (2018) Targeting Fyn kinase in Alzheimer's disease, Biol. Psychiatry, 83, 369-376, https://doi.org/10.1016/j.biopsych.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  191. Roberson, E. D., Halabisky, B., Yoo, J. W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G. Q., Palop, J. J., Noebels, J. L., and Mucke, L. (2011) Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease, J. Neurosci., 31, 700-711, https://doi.org/10.1523/JNEUROSCI.4152-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stroth, N., and Svenningsson, P. (2015) S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior, Eur. Neuropsychopharmacol., 25, 2372-2380, https://doi.org/10.1016/j.euroneuro.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  193. Shapiro, L. A., Bialowas-McGoey, L. A., and Whitaker-Azmitia, P. M. (2010) Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in down syndrome and Alzheimer's disease: studies in an S100B overexpressing mouse model, Cardiovasc. Psychiatry Neurol., 2010, 153657, https://doi.org/10.1155/2010/153657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cirillo, C., Capoccia, E., Iuvone, T., Cuomo, R., Sarnelli, G., Steardo, L., and Esposito, G. (2015) S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease, BioMed Res. Int., 2015, 508342, https://doi.org/10.1155/2015/508342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Leclerc, E., Sturchler, E., and Vetter, S. W. (2010) The S100B/RAGE axis in Alzheimer's disease, Cardiovasc. Psychiatry Neurol., 2010, 539581, https://doi.org/10.1155/2010/539581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mori, T., Koyama, N., Arendash, G. W., Horikoshi-Sakuraba, Y., Tan, J., and Town, T. (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease, Glia, 58, 300-314, https://doi.org/10.1002/glia.20924.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Mrak, R. E., and Griffinbc, W. S. (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease, Neurobiol. Aging, 22, 915-922, https://doi.org/10.1016/s0197-4580(01)00293-7.

    Article  CAS  PubMed  Google Scholar 

  198. Popova, N. K., and Naumenko, V. S. (2019) Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem, Expert Opin. Ther. Targets, 23, 227-239, https://doi.org/10.1080/14728222.2019.1572747.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-15-00011).

Author information

Authors and Affiliations

Authors

Contributions

D.V.E. and E.M.K. wrote and edited the manuscript; A.Ya.R. created the figures and provided description of intracellular mechanisms; C.A.M. wrote the manuscript; D.A.K. edited the manuscript; V.S.N. supervised the study, edited the manuscript, and provided funding.

Corresponding author

Correspondence to Dmitrii V. Eremin.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants of animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, D.V., Kondaurova, E.M., Rodnyy, A.Y. et al. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer’s Disease. Biochemistry Moscow 88, 2023–2042 (2023). https://doi.org/10.1134/S0006297923120064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120064

Keywords

Navigation