Skip to main content
Log in

Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in the RA-sensitive cells, CRABP1 expression is restricted by methylation, and protein levels are highly variable. In the moderately-RA-resistant cell lines, high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The cell lines with maximum resistance to RA are characterized by complete repression of CRABP1 expression realized at transcriptional and posttranscriptional levels, and exogenous expression of each of the CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. In particular, CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA in the initially RA-sensitive cells, while in the more resistant cells the role of each homolog in both of these parameters is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

BC:

breast cancer

ATRA:

all-trans retinoic acid

CRABP1 and CRABP2:

cellular retinoic acid binding protein 1 and 2

DAC:

5-Aza-2′-deoxycytidine

RA:

retinoic acid

RAR:

retinoic acid receptor

TSA:

trichostatin A

References

  1. Yilmaz, M., Kantarjian, H., and Ravandi, F. (2021) Acute promyelocytic leukemia current treatment algorithms, Blood Cancer J., 11, 123, https://doi.org/10.1038/s41408-021-00514-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siddikuzzaman, Guruvayoorappan, C., and Berlin Grace, V. M. (2011) All trans retinoic acid and cancer, Immunopharmacol. Immunotoxicol., 33, 241-249, https://doi.org/10.3109/08923973.2010.521507.

    Article  CAS  Google Scholar 

  3. Choi, Y., Kim, S. Y., Kim, S. H., Yang, J., Park, K., and Byun, Y. (2003) Inhibition of tumor growth by biodegradable microspheres containing all-trans-retinoic acid in a human head-and-neck cancer xenograft, Int. J. Cancer, 107, 145-148, https://doi.org/10.1002/ijc.11354.

    Article  CAS  PubMed  Google Scholar 

  4. Reynolds, C. P., Matthay, K. K., Villablanca, J. G., and Maurer, B. J. (2003) Retinoid therapy of high-risk neuroblastoma, Cancer Lett., 197, 185-192, https://doi.org/10.1016/S0304-3835(03)00108-3.

    Article  CAS  PubMed  Google Scholar 

  5. David, M., Hodak, E., and Lowe, N. J. (1988) Adverse effects of retinoids, Med. Toxicol. Adverse Drug Exp., 3, 273-288, https://doi.org/10.1007/BF03259940.

    Article  CAS  PubMed  Google Scholar 

  6. Campos, B., Weisang, S., Osswald, F., Ali, R., Sedlmeier, G., Bageritz, J., Mallm, J. P., Hartmann, C., von Deimling, A., Popanda, O., Goidts, V., Plass, C., Unterberg, A., Schmezer, P., Burhenne, J., and Herold-Mende, C. (2015) Retinoid resistance and multifaceted impairment of retinoic acid synthesis in glioblastoma, Glia, 63, 1850-1859, https://doi.org/10.1002/glia.22849.

    Article  PubMed  Google Scholar 

  7. Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N., and Noy, N. (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors, Cell, 129, 723-733, https://doi.org/10.1016/j.cell.2007.02.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veerkamp, J. H., and Maatman, R. G. (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes, Prog. Lipid Res., 34, 17-52, https://doi.org/10.1016/0163-7827(94)00005-7.

    Article  CAS  PubMed  Google Scholar 

  9. Dong, D., Ruuska, S. E., Levinthal, D. J., and Noy, N. (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid, J. Biol. Chem., 274, 23695-23698, https://doi.org/10.1074/JBC.274.34.23695.

    Article  CAS  PubMed  Google Scholar 

  10. Jing, Y., Waxman, S., and Mira-y-Lopez, R. (1997) The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signaling in breast cancer cells, Cancer Res., 57, 1668-1672.

    CAS  PubMed  Google Scholar 

  11. Tang, X.-H., Vivero, M., and Gudas, L. J. (2008) Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid, Exp. Cell Res., 314, 38-51, https://doi.org/10.1016/j.yexcr.2007.07.016.

    Article  CAS  PubMed  Google Scholar 

  12. Persaud, S. D., Lin, Y. W., Wu, C. Y., Kagechika, H., and Wei, L. N. (2013) Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid, Cell. Signalling, 25, 19-25, https://doi.org/10.1016/j.cellsig.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  13. Boylan, J. F., and Gudas, L. J. (1992) The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells, J. Biol. Chem., 267, 21486-21491, https://doi.org/10.1016/s0021-9258(19)36635-9.

    Article  CAS  PubMed  Google Scholar 

  14. Napoli, J. L. (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism, Biochim. Biophys. Acta, 1440, 139-162, https://doi.org/10.1016/S1388-1981(99)00117-1.

    Article  CAS  PubMed  Google Scholar 

  15. Boylan, J. F., and Gudas, L. J. (1991) Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells, J. Cell Biol., 112, 965-979, https://doi.org/10.1083/jcb.112.5.965.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, R. Z., Garcia, E., Glubrecht, D. D., Poon, H. Y., Mackey, J. R., and Godbout, R. (2015) CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid, Mol. Cancer, 14, 129, https://doi.org/10.1186/s12943-015-0380-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Q., Wang, R., Xiao, W., Sun, F., Yuan, H., and Pan, Q. (2016) Cellular retinoic acid binding protein 2 is strikingly downregulated in human esophageal squamous cell carcinoma and functions as a tumor suppressor, PLoS One, 11, e0148381, https://doi.org/10.1371/journal.pone.0148381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta, A., Williams, B. R. G., Hanash, S. M., and Rawwas, J. (2006) Cellular retinoic acid-binding protein II is a direct transcriptional target of MycN in neuroblastoma, Cancer Res., 66, 8100-8108, https://doi.org/10.1158/0008-5472.CAN-05-4519.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, R. Z., Li, S., Garcia, E., Glubrecht, D. D., Yin Poon, H., Easaw, J. C., and Godbout, R. (2016) Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma, Glia, 64, 963-976, https://doi.org/10.1002/glia.22976.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, Q., Tan, L., Jin, Z., Liu, Y., and Zhang, Z. (2020) Downregulation of CRABP2 inhibit the tumorigenesis of hepatocellular carcinoma in vivo and in vitro, BioMed Res. Int., 2020, 3098327, https://doi.org/10.1155/2020/3098327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, X., Zhang, M., Wang, B., Zhou, C., Mu, Y., Li, J., Liu, X., Wang, Y., Song, Z., and Liu, P. (2019) CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status, J. Exp. Clin. Cancer Res., 38, 361, https://doi.org/10.1186/s13046-019-1345-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Favorskaya, I., Kainov, Y., Chemeris, G., Komelkov, A., Zborovskaya, I., and Tchevkina, E. (2014) Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer, Tumor Biol., 35, 10295-10300, https://doi.org/10.1007/s13277-014-2348-4.

    Article  CAS  Google Scholar 

  23. Lu, Y., Lemon, W., Liu, P. Y., Yi, Y., Morrison, C., Yang, P., Sun, Z., Szoke, J., Gerald, W. L., Watson, M., Govindan, R., and You, M. (2006) A gene expression signature predicts survival of patients with stage I non-small cell lung cancer, PLoS Med., 3, 2229-2243, https://doi.org/10.1371/journal.pmed.0030467.

    Article  CAS  Google Scholar 

  24. Hawthorn, L., Stein, L., Varma, R., Wiseman, S., Loree, T., and Tan, D. F. (2004) TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma, Head Neck, 26, 1069-1083, https://doi.org/10.1002/hed.20099.

    Article  PubMed  Google Scholar 

  25. Tanaka, K., Imoto, I., Inoue, J., Kozaki, K., Tsuda, H., Shimada, Y., Aiko, S., Yoshizumi, Y., Iwai, T., Kawano, T., and Inazawa, J. (2007) Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma, Oncogene, 26, 6456-6468, https://doi.org/10.1038/sj.onc.1210459.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, Y., De la Chapelle, A., and Pellegata, N. S. (2003) Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma, Int. J. Cancer, 104, 735-744, https://doi.org/10.1002/ijc.11006.

    Article  CAS  PubMed  Google Scholar 

  27. Blaese, M. A., Santo-Hoeltje, L., and Rodemann, H. P. (2003) CRABP I expression and the mediation of the sensitivity of human tumour cells to retinoic acid and irradiation, Int. J. Radiat. Biol., 79, 981-991, https://doi.org/10.1080/09553000310001632949.

    Article  CAS  PubMed  Google Scholar 

  28. Choi, W.-S., Liu, R.-Z., and Godbout, R. (2021) Abstract 1401: MYC mediates retinoic acid resistance by suppressing cellular retinoic acid-binding protein (CRABP2) transcription in HER2-enriched breast cancers, Cancer Res., 81, 1401-1401, https://doi.org/10.1158/1538-7445.am2021-1401.

    Article  Google Scholar 

  29. Enikeev, A. D., Komelkov, A. V., Axelrod, M. E., Galetsky, S. A., Kuzmichev, S. A., and Tchevkina, E. M. (2021) CRABP1 and CRABP2 protein levels correlate with each other but do not correlate with sensitivity of breast cancer cells to retinoic acid, Biochemistry (Moscow), 86, 217-229, https://doi.org/10.1134/S0006297921020103.

    Article  CAS  PubMed  Google Scholar 

  30. Kainov, Y., Favorskaya, I., Delektorskaya, V., Chemeris, G., Komelkov, A., Zhuravskaya, A., Trukhanova, L., Zueva, E., Tavitian, B., Dyakova, N., Zborovskaya, I., and Tchevkina, E. (2014) CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors, Cell Cycle, 13, 1530-1539, https://doi.org/10.4161/cc.28475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Enikeev, A. D., Komelkov, A. V., Axelrod, M. E., Galetsky, S. A., and Tchevkina, E. M. (2020) Effect of CRABP1 expression on the proliferation and the sensitivity to retionoic acid of breast cancer cells of different origin, Usp. Mol. Oncol., 7, 46-50, https://doi.org/10.17650/2313-805X-2020-7-4-46-50.

    Article  Google Scholar 

  32. Vreeland, A. C., Levi, L., Zhang, W., Berry, D. C., and Noy, N. (2014) Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms, J. Biol. Chem., 289, 34065-34073, https://doi.org/10.1074/jbc.M114.604041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, A. C., Yu, K., Lane, M. A., and Gudas, L. J. (2003) Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration, Arch. Biochem. Biophys., 411, 159-173, https://doi.org/10.1016/S0003-9861(02)00732-4.

    Article  CAS  PubMed  Google Scholar 

  34. Vaessen, M. J., Meijers, J. H. C., Bootsma, D., and van Kessel, G. (1990) The cellular retinoic-acid-binding protein is expressed in tissues associated with retinoic-acid-induced malformations, Development, 110, 371-378, https://doi.org/10.1242/dev.110.2.371.

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Castro, A. V., Tran, V. T., and Nguyen-Huu, M. C. (1993) Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I, Development, 119, 363-375, https://doi.org/10.1242/dev.119.2.363.

    Article  CAS  PubMed  Google Scholar 

  36. Pavone, M. E., Reierstad, S., Sun, H., Milad, M., Bulun, S. E., and Cheng, Y. H. (2010) Altered retinoid uptake and action contributes to cell survival in endometriosis, J. Clin. Endocrinol. Metab., 95, E300-E309, https://doi.org/10.1210/jc.2010-0459.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, W., Levi, L., Banerjee, P., Jain, M., and Noy, N. (2015) Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling, Oncotarget, 6, 35830-35842, https://doi.org/10.18632/oncotarget.5767.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tchevkina, E. M. (2017) Retinoic acid binding proteins and cancer: similarity or polarity? Cancer Ther. Oncol. Int. J., 8, 555733, https://doi.org/10.19080/ctoij.2017.08.555733.

    Article  Google Scholar 

  39. Enikeev, A. D., Komelkov, A. V., Belyaeva, A. A., Galetsky, S. A., and Tchevkina, E. M. (2023) Expression of the CRABP1 protein is associated with the level of resistance of the maligant tumor cells of various origin to retinoic acid [in Russian], Retseptory Vnutriklet. Signal., 2, 668-675.

    Google Scholar 

  40. Budyak, I. L., Krishnan, B., Marcelino-Cruz, A. M., Ferrolino, M. C., Zhuravleva, A., and Gierasch, L. M. (2013) Early folding events protect aggregation-prone regions of a β-rich protein, Structure, 21, 476-485, https://doi.org/10.1016/j.str.2013.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrolino, M. C., Zhuravleva, A., Budyak, I. L., Krishnan, B., and Gierasch, L. M. (2013) Delicate balance between functionally required flexibility and aggregation risk in a β-rich protein, Biochemistry, 52, 8843-8854, https://doi.org/10.1021/bi4013462.

    Article  CAS  PubMed  Google Scholar 

  42. Ignatova, Z., and Gierasch, L. M. (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling, Proc. Natl. Acad. Sci. USA, 101, 523-528, https://doi.org/10.1073/pnas.0304533101.

    Article  CAS  PubMed  Google Scholar 

  43. Thakur, A. K., Meng, W., and Gierasch, L. M. (2018) Local and non-local topological information in the denatured state ensemble of a β-barrel protein, Protein Sci., 27, 2062-2072, https://doi.org/10.1002/pro.3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donato, L. J., Suh, J. H., and Noy, N. (2007) Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling, Cancer Res., 67, 609-615, https://doi.org/10.1158/0008-5472.CAN-06-0989.

    Article  CAS  PubMed  Google Scholar 

  45. Vreeland, A. C., Yu, S., Levi, L., de Barros Rossetto, D., and Noy, N. (2014) Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2, Mol. Cell. Biol., 34, 2135-2146, https://doi.org/10.1128/mcb.00281-14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Delektorskaya, V. V., Chemeris, G. Yu., Kainov, Ya. A., Kozlov, N. A., and Zborovskaya, I. B. (2013) Expression of the protein binding retinoic acid and proliferative activity of cells in pancreatic neuroendocrine tumors [in Russian], Mol. Med., 2013, 38-43.

    Google Scholar 

  47. Stroganova, A. M., Chemeris, G. Yu., Chevkina, E. M., Senderovich, A. I., and Karseladze, A. I. (2016) CRABP1 protein and its role in the processs of neuroblastoma differentiation [in Russian], Vestnik RONTs im. N. N. Blokhina MZ RF, 27, 157-164.

    Google Scholar 

  48. Celestino, R., Nome, T., Pestana, A., Hoff, A. M., Gonçalves, A. P., Pereira, L., Cavadas, B., Eloy, C., Bjøro, T., Sobrinho-Simões, M., Skotheim, R. I., and Soares, P. (2018) CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension, BMC Cancer, 18, 68, https://doi.org/10.1186/s12885-017-3948-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahlquist, T., Lind, G. E., Costa, V. L., Meling, G. I., Vatn, M., Hoff, G. S., Rognum, T. O., Skotheim, R. I., Thiis-Evensen, E., and Lothe, R. A. (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers, Mol. Cancer, 7, 94, https://doi.org/10.1186/1476-4598-7-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noy, N., Morgan, E., and Kannan-Thulasiraman, P. (2010) Involvement of fatty acid binding protein 5 and PPAR β/δ in prostate cancer cell growth, PPAR Res., 2010, 234629, https://doi.org/10.1155/2010/234629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levi, L., Lobo, G., Doud, M. K., Von Lintig, J., Seachrist, D., Tochtrop, G. P., and Noy, N. (2013) Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis, Cancer Res., 73, 4770-4780, https://doi.org/10.1158/0008-5472.CAN-13-0384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Enikeev, A. D., Komelkov, A. V., Elkina, N. V., Akselrod, M. E., Kuzmichev, S. A., and Tchevkina, E. M. (2022) Resistance of breast cancer cells to all-trans retinoic acid is associated with a decrease in the basal level of nuclear receptor RARa expression and induction of cytochrome CYP26A1 and CYP26B1 expression [in Russian], Usp. Mol. Oncol., 9, 66-78, https://doi.org/10.17650/2313-805X-2022-9-2-66-78.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 22-15-00373).

Author information

Authors and Affiliations

Authors

Contributions

A.D.E. conducting experiments, analysis of the literature, writing the paper; P.M.A., D.S.E., A.V.K., A.A.B., and D.M.S. conducting experiments, E.M.Tch. design of the study, analysis of the results, editing of the manuscript.

Corresponding author

Correspondence to Elena M. Tchevkina.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not describe any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enikeev, A.D., Abramov, P.M., Elkin, D.S. et al. Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid. Biochemistry Moscow 88, 2107–2124 (2023). https://doi.org/10.1134/S0006297923120131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120131

Keywords

Navigation