Skip to main content
Log in

Phenoptosis and the Various Types of Natural Selection

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Wilson, D. S., and Wilson, E. O. (2007) Rethinking the theoretical foundation of sociobiology, Quart. Rev. Biol., 82, 327-348, https://doi.org/10.1086/522809.

    Article  PubMed  Google Scholar 

  2. Gardner, A. (2015) The genetical theory of multilevel selection, J. Evol. Biol., 28, 305-319, https://doi.org/10.1111/jeb.12566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goodnight, C. J. (2016) On the effectiveness of multilevel selection, Behav. Brain Sci., 39, e99, https://doi.org/10.1017/S0140525X15001053.

    Article  PubMed  Google Scholar 

  4. Szathmáry, E., and Smith, J. M. (1995) The major evolutionary transitions, Nature, 374, 227-232, https://doi.org/10.1038/374227a0.

    Article  PubMed  Google Scholar 

  5. West, S. A., Fisher, R. M., Gardner, A., and Kiers, E. T. (2015) Major evolutionary transitions in individuality, Proc. Natl. Acad. Sci. USA, 112, 10112-10119, https://doi.org/10.1073/pnas.1421402112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Darwin, C. R. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation 1 of The Favoured Races in the Struggle for Life, John Murray, London.

  7. Spencer, H. (1864) The Principles of Biology, Williams and Norgate, London.

  8. Darwin, C. R. (1869) Origin of Species, 5th ed., John Murray, London.

  9. Darwin, C. R. (1871) The Descent of Man, and Selection in Relation to Sex, John Murray, London.

  10. Hamilton, W. D. (1964) The genetical evolution of social behaviour. II, J. Theor. Biol., 7, 1-52, https://doi.org/10.1016/0022-5193(64)90039-6.

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton, W. D. (1970) Selfish and Spiteful Behaviour in an Evolutionary Model, Nature, 228, 1218-1220, https://doi.org/10.1038/2281218a0.

    Article  CAS  PubMed  Google Scholar 

  12. Trivers, R. L. (1971) The evolution of reciprocal altruism, Quart. Rev. Biol., 46, 35-57, https://doi.org/10.1086/406755.

    Article  Google Scholar 

  13. Wilson, E. O. (1975). Sociobiology: The New Synthesis, Belknap Press of Harvard University Press, Harvard.

  14. Libertini, G., Corbi, G., Conti, V., Shubernetskaya, O., and Ferrara, N. (2021) Evolutionary Gerontology and Geriatrics – Why and How We Age. Advances in Studies of Aging and Health, 2, Springer, Switzerland, https://doi.org/10.1007/978-3-030-73774-0.

  15. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191-1195.

    CAS  PubMed  Google Scholar 

  16. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

    CAS  PubMed  Google Scholar 

  17. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707-715, https://doi.org/10.1134/S0006297912070024.

    Article  CAS  PubMed  Google Scholar 

  18. Finch, C. E. (1990) Longevity, Senescence, and the Genome, University of Chicago Press, Chicago.

  19. Kirkwood, T. B., and Austad, S. N. (2000) Why do we age? Nature, 408, 233-238, https://doi.org/10.1038/35041682.

    Article  CAS  PubMed  Google Scholar 

  20. Kirkwood, T. B., and Melov, S. (2011) On the programmed/non-programmed nature of ageing within the life history, Curr. Biol., 21, R701-R707, https://doi.org/10.1016/j.cub.2011.07.020.

    Article  CAS  PubMed  Google Scholar 

  21. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145-162, https://doi.org/10.1016/s0022-5193(88)80153-x.

    Article  CAS  PubMed  Google Scholar 

  22. Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214-237, https://doi.org/10.1111/j.1749-6632.2002.tb02095.x.

    Article  CAS  PubMed  Google Scholar 

  23. LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., and Ventura, M. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective, Curr. Opin. Biotechnol., 24, 160-168, https://doi.org/10.1016/j.copbio.2012.08.005.

    Article  CAS  PubMed  Google Scholar 

  24. Zhan, Q., Wang, R., Thakur, K., Feng, J. Y., Zhu, Y. Y., Zhang, J. G., and Wei, Z. J. (2022) Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis, Crit. Rev. Food Sci. Nutr., 22, 1-13, https://doi.org/10.1080/10408398.2022.2138263.

    Article  CAS  Google Scholar 

  25. Sender, R., Fuchs, S., and Milo, R. (2016) Revised estimates for the number of human and bacteria cells in the body, PLoS Biol., 14, e1002533, https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pride, D. T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R. A. 3rd, Loomer, P., Armitage, G. C., and Relman, D. A. (2012) Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome, ISME J., 6, 915-926, https://doi.org/10.1038/ismej.2011.169.

    Article  CAS  PubMed  Google Scholar 

  27. Abeles, S. R., and Pride, D. T. (2014) Molecular bases and role of viruses in the human microbiome, J. Mol. Biol., 426, 3892-3906, https://doi.org/10.1016/j.jmb.2014.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang, G., and Bushman, F. D. (2021) The human virome: assembly, composition and host interactions, Nat. Rev. Microbiol., 19, 514-527, https://doi.org/10.1038/s41579-021-00536-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moustafa, A., Xie, C., Kirkness, E., Biggs, W., Wong, E., Turpaz, Y., Bloom, K., Delwart, E., Nelson, K. E., Venter, J. C., and Telenti, A. (2017) The blood DNA virome in 8,000 humans, PLoS Pathogens, 13, e1006292, https://doi.org/10.1371/journal.ppat.1006292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghose, C., Ly, M., Schwanemann, L. K., Shin, J. H., Atab, K., Barr, J. J., Little, M., Schooley, R. T., Chopyk, J., Pride, D. T. (2019) The virome of cerebrospinal fluid: viruses where we once thought there were none, Front. Microbiol., 10, 2061, https://doi.org/10.3389/fmicb.2019.02061.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pannaraj, P. S., Ly, M., Cerini, C., Saavedra, M., Aldrovandi, G. M., Saboory, A. A., Johnson, K. M., and Pride, D. T. (2018) Shared and distinct features of human milk and infant stool viromes, Front. Microbiol., 9, 1162, https://doi.org/10.3389/fmicb.2018.01162.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deo, P. N., and Deshmukh, R. (2019) Oral microbiome: unveiling the fundamentals, J. Oral Maxillofac. Pathol., 23, 122-128, https://doi.org/10.4103/jomfp.JOMFP_304_18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Glendinning, L., and Free, A. (2014) Supra-organismal interactions in the human intestine, Front. Cell. Infect. Microbiol., 4, 47, https://doi.org/10.3389/fcimb.2014.00047.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grice, E. A., and Segre, J. A. (2012) The human microbiome: our second genome, Annu. Rev. Genomics Hum. Genet., 13, 151-170, https://doi.org/10.1146/annurev-genom-090711-163814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woese, C. R., and Fox, G. E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. USA, 74, 5088-5090, https://doi.org/10.1073/pnas.74.11.5088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conway de Macario, E., and Macario, A. J. L. (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis, Int. J. Med. Microbiol., 299, 99-108, https://doi.org/10.1016/j.ijmm.2008.06.011.

    Article  PubMed  Google Scholar 

  37. Bang, C., and Schmitz, R. A. (2015) Archaea associated with human surfaces: not to be underestimated, FEMS Microbiol. Rev., 39, 631-648, https://doi.org/10.1093/femsre/fuv010.

    Article  CAS  PubMed  Google Scholar 

  38. Chibani, C. M., Mahnert, A., Borrel, G., Almeida, A., Werner, A., Brugère, J. F., Gribaldo, S., Finn, R. D., Schmitz, R. A., and Moissl-Eichinger, C. (2022) A catalogue of 1,167 genomes from the human gut archaeome, Nat. Microbiol., 7, 48-61, https://doi.org/10.1038/s41564-021-01020-9.

    Article  CAS  PubMed  Google Scholar 

  39. Cai, M., and Tang, X. (2022) Human archaea and associated metabolites in health and disease, Biochemistry, 61, 2835-2840, https://doi.org/10.1021/acs.biochem.2c00232.

    Article  CAS  PubMed  Google Scholar 

  40. Mohammadzadeh, R., Mahnert, A., Duller, S., and Moissl-Eichinger, C. (2022) Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease, Curr. Opin. Microbiol., 67, 102146, https://doi.org/10.1016/j.mib.2022.102146.

    Article  CAS  PubMed  Google Scholar 

  41. Litwin, D., Chen, W., Dzika, E., and Korycińska, J. (2017) Human permanent ectoparasites; recent advances on biology and clinical significance of demodex mites: narrative review article, Iran. J. Parasitol., 2, 12-21.

    Google Scholar 

  42. Charbonneau, M. R., Blanton, L. V., DiGiulio, D. B., Relman, D. A., Lebrilla, C. B., Mills, D. A., and Gordon, J. I. (2016) A microbial perspective of human developmental biology, Nature, 535, 48-55, https://doi.org/10.1038/nature18845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baedke, J., Fábregas-Tejeda, A., and Nieves Delgado, A. (2020) The holobiont concept before Margulis, J. Exp. Zool. B Mol. Dev. Evol., 334, 149-155, https://doi.org/10.1002/jez.b.22931.

    Article  PubMed  Google Scholar 

  44. Margulis, L., and Fester, R. (1991) Symbiosis as a Source of Evolutionary Innovation, MIT Press, Cambridge.

  45. Urashima, T., Hirabayashi, J., Sato, S., and Kobata, A. (2018) Human milk oligosaccharides as essential tools for basic and application studies on galectins, Trends Glycosci. Glycotechnol., 30, SJ11-SJ24, https://doi.org/10.4052/tigg.1734.1SJ.

    Article  Google Scholar 

  46. Salminen, S., Stahl, B., Vinderola, G., and Szajewska, H. (2020) Infant formula supplemented with biotics: current knowledge and future perspectives, Nutrients, 12, 1952, https://doi.org/10.3390/nu12071952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunn, J. C., Turner, H. C., Tun, A., and Anderson, R. M. (2016) Epidemiological surveys of, and research on, soil-transmitted helminths in Southeast Asia: a systematic review, Parasit. Vectors, 9, 31, https://doi.org/10.1186/s13071-016-1310-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Veesenmeyer, A. F. (2022) Important nematodes in children, Pediatr. Clin. North Am., 69, 129-139, https://doi.org/10.1016/j.pcl.2021.08.005.

    Article  PubMed  Google Scholar 

  49. Mishra, P. K., Palma, M., Bleich, D., Loke, P., and Gause, W. C. (2014) Systemic impact of intestinal helminth infections, Mucosal Immunol., 7, 753-762, https://doi.org/10.1038/mi.2014.23.

    Article  CAS  PubMed  Google Scholar 

  50. Gazzinelli-Guimaraes, P. H., and Nutman, T. B. (2018) Helminth parasites and immune regulation, F1000Research, 7, 1685, https://doi.org/10.12688/f1000research.15596.1.

    Article  CAS  Google Scholar 

  51. Vieira, S. M., Pagovich, O. E., and Kriegel, M. A. (2014) Diet, microbiota and autoimmune diseases, Lupus, 23, 518-526, https://doi.org/10.1177/0961203313501401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weinstock, J. V., and Elliott, D. E. (2014) Helminth infections decrease host susceptibility to immune-mediated diseases, J. Immunol., 193, 3239-3247, https://doi.org/10.4049/jimmunol.1400927.

    Article  CAS  PubMed  Google Scholar 

  53. Platts-Mills, T. A. E. (2015) The allergy epidemics: 1870-2010, J. Allergy Clin. Immunol., 136, 3-13, https://doi.org/10.1016/j.jaci.2015.03.048.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Martin, W., and Kowallik, K. V. (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’, Eur. J. Phycol., 34, 287-295.

    Google Scholar 

  55. Sagan, L. (1967) On the origin of mitosing cells, J. Theor. Biol., 14, 255-274, https://doi.org/10.1016/0022-5193(67)90079-3.

    Article  CAS  PubMed  Google Scholar 

  56. Gray, M. W., and Doolittle, W. F. (1982) Has the endosymbiont hypothesis been proven? Microbiol. Rev., 46, 1-42, https://doi.org/10.1128/mr.46.1.1-42.1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gray, M. W. (2012) Mitochondrial evolution, Cold Spring Harb. Perspect. Biol., 4, a011403, https://doi.org/10.1101/cshperspect.a011403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gray, M. W. (2017) Lynn Margulis and the endosymbiont hypothesis: 50 years later, Mol. Biol. Cell, 28, 1285-1287, https://doi.org/10.1091/mbc.E16-07-0509.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Woese, C. R., Kandler, O., and Wheelis, M. L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA, 87, 4576-4579, https://doi.org/10.1073/pnas.87.12.4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Wolferen, M., Pulschen, A. A., Baum, B., Gribaldo, S., and Albers, S. V. (2022) The cell biology of archaea, Nat. Microbiol., 7, 1744-1755, https://doi.org/10.1038/s41564-022-01215-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sibbald, S. J., and Archibald, J. M. (2020) Genomic insights into plastid evolution, Genome Biol. Evol., 12, 978-990, https://doi.org/10.1093/gbe/evaa096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. López-García, P., and Moreira, D. (2015) Open questions on the origin of eukaryotes, Trends Ecol. Evol., 30, 697-708, https://doi.org/10.1016/j.tree.2015.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Koonin, E. V. (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140333, https://doi.org/10.1098/rstb.2014.0333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lang, B. F., Gray, M. W., and Burger, G. (1999) Mitochondrial genome evolution and the origin of eukaryotes, Annu. Rev. Genet., 33, 351-397, https://doi.org/10.1146/annurev.genet.33.1.351.

    Article  CAS  PubMed  Google Scholar 

  65. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos, Biol. Reprod., 63, 582-590, https://doi.org/10.1095/biolreprod63.2.582.

    Article  CAS  PubMed  Google Scholar 

  66. Niklas, K. J., and Newman, S. A. (2020) The many roads to and from multicellularity, J. Exp. Bot., 71, 3247-3253, https://doi.org/10.1093/jxb/erz547.

    Article  CAS  PubMed  Google Scholar 

  67. Niklas, K. J., and Newman, S. A. (2013) The origins of multicellular organisms, Evol. Dev., 15, 41-52, https://doi.org/10.1111/ede.12013.

    Article  PubMed  Google Scholar 

  68. Niklas, K. J. (2014) The evolutionary-developmental origins of multicellularity, Am. J. Bot., 101, 6-25, https://doi.org/10.3732/ajb.1300314.

    Article  CAS  PubMed  Google Scholar 

  69. Bonner, J. T. (2000) First Signals: The Evolution of Multicellular Development, Princeton University Press, Princeton, https://doi.org/10.1515/9781400830589.

  70. Schirrmeister, B. E., Antonelli, A., and Bagheri, H. C. (2011) The origin of multicellularity in cyanobacteria, BMC Evol. Biol., 11, 45, https://doi.org/10.1186/1471-2148-11-45.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brunet, T., and King, N. (2017) The origin of animal multicellularity and cell differentiation, Dev. Cell, 43, 124-140, https://doi.org/10.1016/j.devcel.2017.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ros-Rocher, N., Pérez-Posada, A., Leger, M. M., and Ruiz-Trillo, I. (2021) The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition, Open Biol., 11, 200359, https://doi.org/10.1098/rsob.200359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fox, S. I., and Rompolski, K. (2019) Human Physiology, 15th Edn. McGraw-Hill Education, New York.

  74. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239-257, https://doi.org/10.1038/bjc.1972.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jacobson, M. D., Weil, M., and Raff, M. C. (1997) Programmed cell death in animal development, Cell, 88, 347-354, https://doi.org/10.1016/s0092-8674(00)81873-5.

    Article  CAS  PubMed  Google Scholar 

  76. Queller, D. C., and Strassmann, J. E. (2003) Eusociality, Curr. Biol., 13, R861-R863, https://doi.org/10.1016/j.cub.2003.10.043.

    Article  CAS  PubMed  Google Scholar 

  77. Griffin, A. S. (2008) Naked mole-rat, Curr. Biol., 18, R844-R845, https://doi.org/10.1016/j.cub.2008.07.054.

    Article  CAS  PubMed  Google Scholar 

  78. Wong, H. S., Freeman, D. A., and Zhang, Y. (2022) Not just a cousin of the naked mole-rat: Damaraland mole-rats offer unique insights into biomedicine, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 262, 110772, https://doi.org/10.1016/j.cbpb.2022.110772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010) The evolution of eusociality, Nature, 466, 1057-1062, https://doi.org/10.1038/nature09205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hughes, W. O., Oldroyd, B. P., Beekman, M., and Ratnieks, F. L. (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality, Science, 320, 1213-1216, https://doi.org/10.1126/science.1156108.

    Article  CAS  PubMed  Google Scholar 

  81. Hongoh, Y. (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut, Biosci. Biotechnol. Biochem., 74, 1145-1151, https://doi.org/10.1271/bbb.100094.

    Article  CAS  PubMed  Google Scholar 

  82. Ohkuma, M. (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites, Trends Microbiol., 16, 345-352, https://doi.org/10.1016/j.tim.2008.04.004.

    Article  CAS  PubMed  Google Scholar 

  83. Ohkuma, M., and Brune, A. (2010) Diversity, structure, and evolution of the termite gut microbial community, in Biology of Termites: A Modern Synthesis (Bignell, D. E., Roisin, Y., and Lo, N., eds) Springer, Dordrecht, pp. 413-438, https://doi.org/10.1007/978-90-481-3977-4_15.

  84. Thong-On, A., Suzuki, K., Noda, S., Inoue, J., Kajiwara, S., and Ohkuma, M. (2012) Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites, Microbes Environ., 27, 186-192, https://doi.org/10.1264/jsme2.me11325.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ikeda-Ohtsubo, W., and Brune, A. (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and Candidatus Endomicrobium trichonymphae, Mol. Ecol., 18, 332-342, https://doi.org/10.1111/j.1365-294X.2008.04029.x.

    Article  CAS  PubMed  Google Scholar 

  86. Slaytor, M. (1992) Cellulose digestion in termites and cockroaches: What role do symbionts play? Compar. Biochem. Physiol. B, 103, 775-784, https://doi.org/10.1016/0305-0491(92)90194-V.

    Article  Google Scholar 

  87. Zheng, H., Dietrich, C., Thompson, C. L., Meuser, K., and Brune, A. (2015) Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.), Microbes Environ., 30, 92-98, https://doi.org/10.1264/jsme2.ME14169.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Potrikus, C. J., and Breznak, J. A. (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation, Proc. Natl. Acad. Sci. USA, 78, 4601-4605, https://doi.org/10.1073/pnas.78.7.4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Breznak, J. A. (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites, in Termites: Evolution, Sociality, Symbioses, Ecology (Abe, T., Bignell, D. E., and Higashi, M., eds) Kluwer Academic Publishers, Dordrecht, pp. 209-231, https://doi.org/10.1007/978-94-017-3223-9_10.

  90. Burt, A., and Trivers, R. (2006) Genes in conflict. The biology of selfish genetic elements, The Belknap Press of Harvard University Press, Cambridge, https://doi.org/10.4159/9780674029118.

  91. Green, M. M. (1985) The role of mobile DNA elements in unequal and intrachromosomal crossing-over in Drosophila melanogaster, Basic Life Sci., 36, 353-361, https://doi.org/10.1007/978-1-4613-2127-9_24.

    Article  CAS  PubMed  Google Scholar 

  92. McClintock, B. (1951) Chromosome organization and genic expression, Cold Spring Harb. Symp. Quant. Biol., 16, 13-47, https://doi.org/10.1101/sqb.1951.016.01.004.

    Article  CAS  PubMed  Google Scholar 

  93. McGrayne, S. B. (1998) Nobel Prize Women in Science: Their Lives, Struggles, and Momentous Discoveries, Carol Publishing Group, Secaucus (NJ).

  94. Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M. (2002) Mobile DNA II, ASM Press, Washington (D.C.).

  95. Branco, M. R., and de Mendoza Soler, A. (2022) Transposable Elements. Methods and Protocols, Springer, New York, https://doi.org/10.1007/978-1-0716-2883-6.

  96. Pandita, A., and Pandita D. (2023) Plant Transposable Elements. Biology and Biotechnology, Apple Academic Press, Palm Bay (FL), https://doi.org/10.1201/9781003315193.

  97. Sun, C., Feschotte, C., Wu, Z., and Mueller, R. L. (2015) DNA transposons have colonized the genome of the giant virus Pandoravirus salinus, BMC Biol., 13, 38, https://doi.org/10.1186/s12915-015-0145-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hickman, A. B., and Dyda, F. (2016) DNA transposition at work, Chem. Rev., 116, 12758-12784, https://doi.org/10.1021/acs.chemrev.6b00003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, Z., Zhang, H. H., Huang, K., Zhang, X. G., Han, M. J., and Zhang, Z. (2015) Repeated horizontal transfers of four DNA transposons in invertebrates and bats, Mob. DNA, 6, 3, https://doi.org/10.1186/s13100-014-0033-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paulat, N. S., Storer, J. M., Moreno-Santillán, D. D., Osmanski, A. B., Sullivan, K. A. M., Grimshaw, J. R., Korstian, J., Halsey, M., Garcia, C. J., Crookshanks, C., Roberts, J., Smit, A. F. A., Hubley, R., Rosen, J., Teeling, E. C., Vernes, S. C., Myers, E., Pippel, M., Brown, T., Hiller, M., Zoonomia Consortium, Rojas, D., Dávalos, L. M., Lindblad-Toh, K., Karlsson, E. K., and Ray, D. A. (2023) Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia, Mol. Biol. Evol., 40, msad092, https://doi.org/10.1093/molbev/msad092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ohshima, K., and Okada, N. (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail, Cytogenet. Genome Res., 110, 475-490, https://doi.org/10.1159/000084981.

    Article  CAS  PubMed  Google Scholar 

  102. Guffanti, G., Bartlett, A., DeCrescenzo, P., Macciardi, F., and Hunter, R. (2019) Transposable elements, Curr. Top. Behav. Neurosci., 42, 221-246, https://doi.org/10.1007/7854_2019_112.

    Article  CAS  PubMed  Google Scholar 

  103. Luan, D. D., Korman, M. H., Jakubczak, J. L., and Eickbush, T. H. (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition, Cell, 72, 595-605, https://doi.org/10.1016/0092-8674(93)90078-5.

    Article  CAS  PubMed  Google Scholar 

  104. Boeke, J. D. (1997) LINEs and Alus – the polyA connection, Nat Genet., 16, 6-7, https://doi.org/10.1038/ng0597-6.

    Article  CAS  PubMed  Google Scholar 

  105. Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3' sequences: a review, Gene, 205, 229-243, https://doi.org/10.1016/s0378-1119(97)00409-5.

    Article  CAS  PubMed  Google Scholar 

  106. Ogiwara, I., Miya, M., Ohshima, K., and Okada, N. (1999) Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs, Mol. Biol. Evol., 16, 1238-1250, https://doi.org/10.1093/oxfordjournals.molbev.a026214.

    Article  CAS  PubMed  Google Scholar 

  107. Cordaux, R., and Batzer, M. A. (2009) The impact of retrotransposons on human genome evolution, Nat. Rev. Genet., 10, 691-703, https://doi.org/10.1038/nrg2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Coffin, J. M., Hughes, S. M., and Varmus, H. E. (1997) Retroviruses, Cold Spring Harbor Laboratory Press, NY.

  109. Hughes, S. H. (2015) Reverse transcription of retroviruses and LTR retrotransposons, Microbiol. Spectr., 3, https://doi.org/10.1128/microbiolspec.MDNA3-0027-2014.

    Article  PubMed  Google Scholar 

  110. Boeke, J. D., and Stoye, J. P. (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements, in Retroviruses (Coffin, J. M., Hughes, S. M., and Varmus, H. E., eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

  111. Vinogradov, A. E. (2003) Selfish DNA is maladaptive: evidence from the plant Red List, Trends Genet., 19, 609-614, https://doi.org/10.1016/j.tig.2003.09.010.

    Article  CAS  PubMed  Google Scholar 

  112. Vinogradov, A. E. (2004) Genome size and extinction risk in vertebrates, Proc. Biol. Sci., 271, 1701-1705, https://doi.org/10.1098/rspb.2004.2776.

    Article  PubMed  PubMed Central  Google Scholar 

  113. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome, Nature, 409, 860-921, https://doi.org/10.1038/35057062.

    Article  Google Scholar 

  114. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome, Nature, 420, 520-562, https://doi.org/10.1038/nature01262.

    Article  CAS  Google Scholar 

  115. Colleaux, L., d’Auriol, L., Betermier, M., Cottarel, G., Jacquier, A., Galibert, F., and Dujon, B. (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease, Cell, 44, 521-533, https://doi.org/10.1016/0092-8674(86)90262-x.

    Article  CAS  PubMed  Google Scholar 

  116. Barth, Z. K., Dunham, D. T., and Seed, K. D. (2023) Nuclease genes occupy boundaries of genetic exchange between bacteriophages, bioRxiv, https://doi.org/10.1101/2023.03.23.533998.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jaenike, J. (2001) Sex chromosome meiotic drive, Annu. Rev. Ecol. Syst., 32, 25-49, https://doi.org/10.1146/annurev.ecolsys.32.081501.113958.

    Article  Google Scholar 

  118. Wood, R. J., and Newton, M. E. (1991) Sex-ratio distortion caused by meiotic drive in mosquitoes, Am. Nat., 137, 379-391, https://doi.org/10.1086/285171.

    Article  Google Scholar 

  119. Emerson, J. J., Kaessmann, H., Betrán, E., and Long, M. (2004) Extensive gene traffic on the mammalian X chromosome, Science, 303, 537-540, https://doi.org/10.1126/science.1090042.

    Article  CAS  PubMed  Google Scholar 

  120. Garcillán-Barcia, M. P., Redondo-Salvo, S., and de la Cruz, F. (2023) Plasmid classifications, Plasmid, 126, 102684, https://doi.org/10.1016/j.plasmid.2023.102684.

    Article  CAS  PubMed  Google Scholar 

  121. Wein, T., and Dagan, T. (2022) Plasmid evolution, Curr. Biol., 30, R1158-R1163, https://doi.org/10.1016/j.cub.2020.07.003.

    Article  CAS  Google Scholar 

  122. Bottery, M. J. (2022) Ecological dynamics of plasmid transfer and persistence in microbial communities, Curr. Opin. Microbiol., 68, 102152, https://doi.org/10.1016/j.mib.2022.102152.

    Article  CAS  PubMed  Google Scholar 

  123. Lerminiaux, N. A., and Cameron, A. D. S. (2019) Horizontal transfer of antibiotic resistance genes in clinical environments, Can. J. Microbiol., 65, 34-44, https://doi.org/10.1139/cjm-2018-0275.

    Article  CAS  PubMed  Google Scholar 

  124. Willis, A. J. (1997) The ecosystem: an evolving concept viewed historically, Funct. Ecol., 11, 268-271, https://doi.org/10.1111/j.1365-2435.1997.00081.x.

    Article  Google Scholar 

  125. Tansley, A. G. (1935) The use and abuse of vegetational concepts and terms, Ecology, 16, 284-307, https://doi.org/10.2307/1930070.

    Article  Google Scholar 

  126. Chapin, F. S. 3rd, Matson, P. A., and Vitousek, P. M. (2011) Principles of Terrestrial Ecosystem Ecology, 2nd Edn, Springer Nature, Switzerland, https://doi.org/10.1007/978-1-4419-9504-9.

  127. Hestrin, R., Hammer, E. C., Mueller, C. W., and Lehmann, J. (2019) Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition, Commun. Biol., 2, 233, https://doi.org/10.1038/s42003-019-0481-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Giovannetti, M., Avio, L., Fortuna, P., Pellegrino, E., Sbrana, C., and Strani, P. (2006) At the root of the wood wide web: self recognition and non-self incompatibility in mycorrhizal networks, Plant Signal. Behav., 1, 1-5, https://doi.org/10.4161/psb.1.1.2277.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Peter, M. (2006) Ectomycorrhizal fungi – fairy rings and the wood-wide web, New Phytol., 171, 685-687, https://doi.org/10.1111/j.1469-8137.2006.01856.x.

    Article  PubMed  Google Scholar 

  130. Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A., and Kretzer, A. M. (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts, New Phytologist, 185, 543-553, https://doi.org/10.1111/j.1469-8137.2009.03069.x.

    Article  CAS  PubMed  Google Scholar 

  131. Gorzelak, M. A., Asay, A. K., Pickles, B. J., and Simard, S. W. (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities, AoB Plants, 7, plv050, https://doi.org/10.1093/aobpla/plv050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sharifi, R., and Ryu, C. M. (2021) Social networking in crop plants: Wired and wireless cross-plant communications, Plant Cell Environ., 44, 1095-1110, https://doi.org/10.1111/pce.13966.

    Article  CAS  PubMed  Google Scholar 

  133. Hettenhausen, C., Li, J., Zhuang, H., Sun, H., Xu, Y., Qi, J., Zhang, J., Lei, Y., Qin, Y., Sun, G., Wang, L., Baldwin, I. T., and Wu, J. (2017) Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants, Proc. Natl. Acad. Sci. USA, 114, E6703-E6709, https://doi.org/10.1073/pnas.1704536114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhuang, H., Li, J., Song, J., Hettenhausen, C., Schuman, M. C., Sun, G., Zhang, C., Li, J., Song, D., and Wu, J. (2018) Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host, New Phytol., 218, 1586-1596, https://doi.org/10.1111/nph.15083.

    Article  CAS  PubMed  Google Scholar 

  135. Ripple, W. J., and Beschta, R. L. (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience, 54, 755, https://doi.org/10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.

    Article  Google Scholar 

  136. Robbins, J. (2004) Lessons from the wolf, Sci. Am., 290, 76-81, https://doi.org/10.1038/scientificamerican0604-76.

    Article  PubMed  Google Scholar 

  137. Hall, K. R. L. (1960) Social vigilance behaviour of the chacma baboon, Papio ursinus, Behaviour, 16, 261-294, https://doi.org/10.1163/156853960X00188.

    Article  Google Scholar 

  138. Altmann, S. A., and Altmann, J. (1970) Baboon Ecology: African Field Research, The University of Chicago Press, Chicago.

  139. Lane, N. (2008) Marine microbiology: origins of death, Nature, 453, 583-585, https://doi.org/10.1038/453583a.

    Article  CAS  PubMed  Google Scholar 

  140. Institute of Medicine (USA) (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements, The National Academies Press, Washington (DC), https://doi.org/10.17226/11537.

  141. López-García, P. (2012) The place of viruses in biology in light of the metabolism- versus-replication-first debate, Hist. Philos. Life Sci., 34, 391-406.

    PubMed  Google Scholar 

  142. Koonin, E. V., Krupovic, M., and Agol, V. I. (2021) The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol. Mol. Biol. Rev., 85, e0005321, https://doi.org/10.1128/MMBR.00053-21.

    Article  PubMed  Google Scholar 

  143. Krupovic, M., Dolja, V. V., and Koonin, E. V. (2019) Origin of viruses: primordial replicators recruiting capsids from hosts, Nat. Rev. Microbiol., 17, 449-458, https://doi.org/10.1038/s41579-019-0205-6.

    Article  CAS  PubMed  Google Scholar 

  144. Spang, A., Mahendrarajah, T. A., Offre, P., and Stairs, C. W. (2022) Evolving perspective on the origin and diversification of cellular life and the Virosphere, Genome Biol. Evol., 14, evac034, https://doi.org/10.1093/gbe/evac034.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Stein, R. A., and DePaola, R. V. (2023) Human endogenous retroviruses: our genomic fossils and companions, Physiol. Genomics, 55, 249-258, https://doi.org/10.1152/physiolgenomics.00171.2022.

    Article  CAS  PubMed  Google Scholar 

  146. Brandes, N., and Linial, M. (2019) Giant viruses – big surprises, Viruses, 11, 404, https://doi.org/10.3390/v11050404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Oliveira, E. G., Carvalho, J. V. R. P., Botelho, B. B., da Costa Filho, C. A., Henriques, L. R., de Azevedo, B. L., and Rodrigues, R. A. L. (2022) Giant Viruses as a Source of Novel Enzymes for Biotechnological Application, Pathogens, 11, 1453, https://doi.org/10.3390/pathogens11121453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Abergel, C., and Claverie, J. M. (2020) Giant viruses, Curr. Biol., 30, R1108-R1110, https://doi.org/10.1016/j.cub.2020.08.055.

    Article  CAS  PubMed  Google Scholar 

  149. Zonca, V. (2021) Lichens: For Minimal Resistance [in French], Éditions le Pommier, Paris.

  150. Loyfer, N., Magenheim, J., Peretz, A., Cann, G., Bredno, J., Klochendler, A., Fox-Fisher, I., Shabi-Porat, S., Hecht, M., Pelet, T., Moss, J., Drawshy, Z., Amini, H., Moradi, P., Nagaraju, S., Bauman, D., Shveiky, D., Porat, S., Dior, U., Rivkin, G., Or, O., Hirshoren, N., Carmon, E., Pikarsky, A., Khalaileh, A., Zamir, G., Grinbaum, R., Gazala, M. A., Mizrahi, I., Shussman, N., Korach, A., Wald, O., Izhar, U., Erez, E., Yutkin, V., Samet, Y., et al. (2023) A DNA methylation atlas of normal human cell types, Nature, 613, 355-364, https://doi.org/10.1038/s41586-022-05580-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacinto Libertini.

Ethics declarations

The author declares no conflicts of interest in financial or any other area. This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libertini, G. Phenoptosis and the Various Types of Natural Selection. Biochemistry Moscow 88, 2007–2022 (2023). https://doi.org/10.1134/S0006297923120052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120052

Keywords

Navigation