Skip to main content
Log in

Towards Nanomaterial-Incorporated Soft Actuators: from Inorganic/Organic Material-Based Soft Robot to Biomaterial-Based Biohybrid Robot

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Soft actuators have played an indispensable part in the field of biosensors and soft robotics as such systems offer solutions that cannot be addressed with rigid actuators due to the lack of both flexibility and sensitivity. However, soft actuators have certain limitations when it comes to their durability and longevity. In recent years, quite a few versatile fabrication techniques and innovative solutions have been developed that have played an essential role in the development of soft robotics. An exemplary innovation involves the integration of nanomaterials into polymers that act as a host in the fabrication of inorganic/organic actuators. These actuators have shown significant enhancement both in their physical and chemical properties. Consequently, it paves the way for the development of sophisticated soft actuator-based devices that can find broader applications in the field of biomedical sciences. However, biocompatibility has been a matter of concern for inorganic/organic soft actuators. Addressing this issue, studies on the development of biomaterial-based soft actuators that incorporate nanomaterials have been conducted for biohybrid robots. This review aims to provide a comprehensive understanding of diverse stimulus-trigger actuation alongside exploring the influence of nanomaterials in inorganic/organic actuators. Further, it gives valuable insights into the implication of biomaterials in soft actuators for the development of biohybrid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data availability statement has been provided under appropriate readings and figs.

References

  1. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., Sitti, M.: Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022)

    CAS  PubMed  Google Scholar 

  2. Schmitt, F., Piccin, O., Barbe, L., Bayle, B.: Soft robots manufacturing: a review. Front. Robot AI 5, 84 (2018)

    PubMed  PubMed Central  Google Scholar 

  3. Coyle, S., Majidi, C., LeDuc, P., Hsia, K.J.: Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59 (2018)

    Google Scholar 

  4. Shin, M.K., Spinks, G.M., Shin, S.R., Kim, S.I., Kim, S.J.: Nanocomposite hydrogel with high toughness for bioactuators. Adv. Mater. 21, 1712 (2009)

    CAS  Google Scholar 

  5. Yang, Y., Jiao, P.: Nanomaterials and nanotechnology for biomedical soft robots. Mater. Today Adv. 17, 100338 (2023)

    CAS  Google Scholar 

  6. Martín-Sánchez, J., Trotta, R., Mariscal, A., Serna, R., Piredda, G., Stroj, S., Edlinger, J., Schimpf, C., Aberl, J., Lettner, T.: Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators. Semicond. Sci. Technol. 33, 013001 (2018)

    Google Scholar 

  7. Xue, P., Chen, Y.H., Xu, Y.Y., Valenzuela, C., Zhang, X., Bisoyi, H.K., Yang, X., Wang, L., Xu, X.H., Li, Q.: Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2023)

    CAS  Google Scholar 

  8. Agarwal, V., Chatterjee, K.: Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale 10, 16365–16397 (2018)

    CAS  PubMed  Google Scholar 

  9. Yang, X., Miao, M.: Carbon nanotube fibers and yarns, pp. 271–291. Elsevier (2020)

    Google Scholar 

  10. Lee, H.J., Baik, S., Hwang, G.W., Song, J.H., Kim, D.W., Park, B.Y., Min, H., Kim, J.K., Koh, J.S., Yang, T.H., Pang, C.: An electronically perceptive bioinspired soft wet-adhesion actuator with carbon nanotube-based strain sensors. ACS Nano 15, 14137–14148 (2021)

    CAS  PubMed  Google Scholar 

  11. Li, Q., Liu, C.: Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films. Nanotechnology 31, 085501 (2019)

    Google Scholar 

  12. Giorcelli, M., Bartoli, M.: Actuators, vol. 8, p. 46. MDPI (2019)

    Google Scholar 

  13. Pyo, S., Eun, Y., Sim, J., Kim, K., Choi, J.: Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro Nano Syst. Lett. 10, 1–12 (2022)

    Google Scholar 

  14. Li, C., Thostenson, E.T., Chou, T.W.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)

    CAS  Google Scholar 

  15. Nishiyama, H., Odashima, S., Asoh, S.: Femtosecond laser writing of plasmonic nanoparticles inside PNIPAM microgels for light-driven 3D soft actuators. Opt. Express 28, 26470–26480 (2020)

    CAS  PubMed  Google Scholar 

  16. Li, D.F., Li, J., Wu, P.C., Zhao, G.Y., Qu, Q.A., Yu, X.E.: Recent advances in electrically driven soft actuators across dimensional scales from 2D to 3D. Adv. Intell. Syst. (2023). https://doi.org/10.1002/aisy.202300070

    Article  Google Scholar 

  17. Evenchik, A.L., Kane, A.Q., Oh, E., Truby, R.L.: Electrically controllable materials for soft. Bioinspired Mach. Ann. Rev. Mater. Res. (2023). https://doi.org/10.1146/annurev-matsci-080921-102916

    Article  Google Scholar 

  18. Bernat, J., Gajewski, P., Kolota, J., Marcinkowska, A.: Review of soft actuators controlled with electrical stimuli: IPMC, DEAP, and MRE. Appl. Sci.-Basel 13, 1651 (2023)

    CAS  Google Scholar 

  19. Li, Q., Liu, C., Lin, Y.H., Liu, L., Jiang, K., Fan, S.: Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9, 409–418 (2015)

    PubMed  Google Scholar 

  20. Liu, X., He, B., Wang, Z., Tang, H., Su, T., Wang, Q.: Tough nanocomposite ionogel-based actuator exhibits robust performance. Sci. Rep. 4, 6673 (2014)

    PubMed  PubMed Central  Google Scholar 

  21. Chen, Y., Yang, J., Zhang, X., Feng, Y., Zeng, H., Wang, L., Feng, W.: Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz. 8, 728–757 (2021)

    CAS  PubMed  Google Scholar 

  22. Dicker, M.P.M., Baker, A.B., Iredale, R.J., Naficy, S., Bond, I.P., Faul, C.F.J., Rossiter, J.M., Spinks, G.M., Weaver, P.M.: Light-triggered soft artificial muscles: molecular-level amplification of actuation control signals. Sci. Rep. 7, 9197 (2017)

    PubMed  PubMed Central  Google Scholar 

  23. Gruzdenko, A., Dierking, I.: Liquid crystal-based actuators. Front. Soft Matter. 2, 1052037 (2022)

    Google Scholar 

  24. Yu, Q., Yang, X., Chen, Y., Yu, K., Gao, J., Liu, Z., Cheng, P., Zhang, Z., Aguila, B., Ma, S.: Fabrication of light-triggered soft artificial muscles via a mixed-matrix membrane strategy. Angew. Chem. Int. Ed. Engl. 57, 10192–10196 (2018)

    CAS  PubMed  Google Scholar 

  25. Song, C.J., Zhang, Y.H., Bao, J.Y., Wang, Z.Z., Zhang, L.Y., Sun, J., Lan, R.C., Yu, Z., Zhu, S.Q., Yang, H.: Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Func. Mater. 33, 2213771 (2023)

    CAS  Google Scholar 

  26. Alipanah, Z., Zakerhamidi, M.S., Movla, H., Azizi, B., Musevic, I., Ranjkesh, A.: Light-powered liquid crystal polymer network actuator using TiO2 nanoparticles as an inorganic ultraviolet-light absorber. ACS Omega 8, 10555–10564 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Melvin, A.A., Gupta, B., Tieriekhov, K., Nogala, W., Garrigue, P., Reculusa, S., Kuhn, A.: Wireless dual stimuli actuation of dye sensitized conducting polymer hybrids. Adv. Func. Mater. 31, 2101171 (2021)

    CAS  Google Scholar 

  28. Liles, K.P., Greene, A.F., Danielson, M.K., Colley, N.D., Wellen, A., Fisher, J.M., Barnes, J.C.: Photoredox-based actuation of an artificial molecular muscle. Macromol. Rapid Commun. 39, e1700781 (2018)

    PubMed  Google Scholar 

  29. Li, L., Meng, J., Hou, C., Zhang, Q., Li, Y., Yu, H., Wang, H.: Dual-mechanism and multimotion soft actuators based on commercial plastic film. ACS Appl. Mater. Interfaces 10, 15122–15128 (2018)

    CAS  PubMed  Google Scholar 

  30. Wu, S., Baker, G.L., Yin, J., Zhu, Y.: Fast thermal actuators for soft robotics. Soft Robot. 9, 1031–1039 (2022)

    PubMed  Google Scholar 

  31. Wei, J.J., Li, R., Li, L., Wang, W.Q., Chen, T.: Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano-Micro Lett. 14, 182 (2022)

    CAS  Google Scholar 

  32. Vantomme, G., Gelebart, A.H., Broer, D.J., Meijer, E.W.: Self-sustained actuation from heat dissipation in liquid crystal polymer networks. J. Polym. Sci. A Polym. Chem. 56, 1331–1336 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Héraly, F., Zhang, M., Åhl, A., Cao, W., Bergström, L., Yuan, J.: Nanodancing with moisture: humidity-sensitive bilayer actuator derived from cellulose nanofibrils and reduced graphene oxide. Adv. Intell. Syst. 4, 2100084 (2022)

    Google Scholar 

  34. Zhao, Z., Hwang, Y.K., Yang, Y., Fan, T.F., Song, J.H., Suresh, S., Cho, N.J.: Actuation and locomotion driven by moisture in paper made with natural pollen. Proc. Natl. Acad. Sci. U.S.A. 117, 8711–8718 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge, Y., Cao, R., Ye, S., Chen, Z., Zhu, Z., Tu, Y., Ge, D., Yang, X.: A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem. Commun. (Camb.) 54, 3126–3129 (2018)

    CAS  PubMed  Google Scholar 

  36. Vázquez-González, M., Willner, I.: Stimuli-responsive biomolecule-based hydrogels and their applications. Angew. Chem. Int. Ed. 59, 15342–15377 (2020)

    Google Scholar 

  37. Wu, D., Baresch, D., Cook, C., Ma, Z., Duan, M., Malounda, D., Maresca, D., Abundo, M.P., Lee, J., Shivaei, S., Mittelstein, D.R., Qiu, T., Fischer, P., Shapiro, M.G.: Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeong, Y., Kong, W., Lu, T., Irudayaraj, J.: Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosens. Bioelectron. 219, 114809 (2022)

    PubMed  Google Scholar 

  39. Chiang, M.Y., Lo, Y.C., Lai, Y.H., Yong, Y.A., Chang, S.J., Chen, W.L., Chen, S.Y.: Protein-based soft actuator with high photo-response and easy modulation for anisotropic cell alignment and proliferation in a liquid environment. J. Mater. Chem. B 9, 6634–6645 (2021)

    CAS  PubMed  Google Scholar 

  40. Deng, N., Li, J., Lyu, H., Huang, R., Liu, H., Guo, C.: Degradable silk-based soft actuators with magnetic responsiveness. J. Mater. Chem. B 10, 7650–7660 (2022)

    CAS  PubMed  Google Scholar 

  41. Aydin, O., Passaro, A.P., Elhebeary, M., Pagan-Diaz, G.J., Fan, A., Nuethong, S., Bashir, R., Stice, S.L., Saif, M.T.A.: Development of 3D neuromuscular bioactuators. APL Bioeng. 4, 016107 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aydin, O., Zhang, X., Nuethong, S., Pagan-Diaz, G.J., Bashir, R., Gazzola, M., Saif, M.T.A.: Neuromuscular actuation of biohybrid motile bots. Proc. Natl. Acad. Sci. U.S.A. 116, 19841–19847 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, K.Y., Park, S.J., Matthews, D.G., Kim, S.L., Marquez, C.A., Zimmerman, J.F., Ardona, H.A.M., Kleber, A.G., Lauder, G.V., Parker, K.K.: An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science 375, 639–647 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tetsuka, H., Pirrami, L., Wang, T., Demarchi, D., Shin, S.R.: Wirelessly powered 3D printed hierarchical biohybrid robots with multiscale mechanical properties. Adv. Funct. Mater. 32, 2202674 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan, L., Li, B., Zhang, N., Sun, K.: Carbon nanohorns carried iron fluoride nanocomposite with ultrahigh rate lithium ion storage properties. Sci. Rep. 5, 12154 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Norizan, M.N., Moklis, M.H., Demon, S.Z.N., Halim, N.A., Samsuri, A., Mohamad, I.S., Knight, V.F., Abdullah, N.: Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv. 10, 43704–43732 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gayen, B., Palchoudhury, S., Chowdhury, J.: Carbon dots: a mystic star in the world of nanoscience. J. Nanomater. 2019, 1–19 (2019)

    Google Scholar 

  48. Iqbal, A.A., Sakib, N., Iqbal, A.P., Nuruzzaman, D.M.: Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 12, 100815 (2020)

    CAS  Google Scholar 

  49. Jackson, P., Jacobsen, N.R., Baun, A., Birkedal, R., Kuhnel, D., Jensen, K.A., Vogel, U., Wallin, H.: Bioaccumulation and ecotoxicity of carbon nanotubes. Chem. Cent. J. 7, 154 (2013)

    PubMed  PubMed Central  Google Scholar 

  50. Kausar, A.: Fullerene reinforced polymeric nanocomposites for energy storage-status and prognoses. Front. Mater. 9, 874169 (2022)

    Google Scholar 

  51. Perez-Ojeda, M.E., Castro, E., Krockel, C., Lucherelli, M.A., Ludacka, U., Kotakoski, J., Werbach, K., Peterlik, H., Melle-Franco, M., Chacon-Torres, J.C., Hauke, F., Echegoyen, L., Hirsch, A., Abellan, G.: Carbon nano-onions: potassium intercalation and reductive covalent functionalization. J. Am. Chem. Soc. 143, 18997–19007 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barhoum, A., Shalan, A.E., El-Hout, S.I., Ali, G.A., Abdelbasir, S.M., Abu Serea, E.S., Ibrahim, A.H., Pal, K., Shalan, A., El-Hout, S.: A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Handbook of nanofibers, pp. 1–40. Springer International Publishing (2019)

    Google Scholar 

  53. Power, A.C., Gorey, B., Chandra, S., Chapman, J.: Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7, 19–41 (2018)

    CAS  Google Scholar 

  54. Maduraiveeran, G., Jin, W.: Carbon nanomaterials: synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B 272, 115341 (2021)

    CAS  Google Scholar 

  55. Naik, J.D., Gorre, P., Akuri, N.G., Kumar, S., Al-Shidaifat, A., Song, H.J.: High-performance graphene FET integrated front-end amplifier using pseudo-resistor technique for neuro-prosthetic diagnosis. BioChip J. 16, 270–279 (2022)

    CAS  Google Scholar 

  56. Chang, L., Wang, D., Jiang, A., Hu, Y.: Soft actuators based on carbon nanomaterials. ChemPlusChem 87, e202100437 (2022)

    CAS  PubMed  Google Scholar 

  57. Notarianni, M., Liu, J., Vernon, K., Motta, N.: Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Oh, D., Kim, J.S., Hwang, I.K., Park, H.S., Lee, C.S., Kim, T.H.: Real-time detection of SARS-CoV-2 nucleocapsid antigen using data analysis software and iot-based portable reader with single-walled carbon nanotube field effect transistor. BioChip J. 17, 393–401 (2023)

    CAS  Google Scholar 

  59. Speranza, G.: Carbon nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials (Basel) 11, 967 (2021)

    CAS  PubMed  Google Scholar 

  60. Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K.T., Palacios, T., Dokmeci, M.R., Bae, H., Tang, X.S., Khademhosseini, A.: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Alekseyev, N.I., Khmelnitskiy, I.K., Aivazyan, V.M., Broyko, A.P., Korlyakov, A.V., Luchinin, V.V.: Ionic EAP actuators with electrodes based on carbon nanomaterials. Polymers (Basel) 13, 4137 (2021)

    CAS  PubMed  Google Scholar 

  62. Yuan, X., Zhang, X., Sun, L., Wei, Y., Wei, X.: Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol. 16, 18 (2019)

    PubMed  PubMed Central  Google Scholar 

  63. Voiry, D., Mohite, A., Chhowalla, M.: Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015)

    CAS  PubMed  Google Scholar 

  64. Yang, R., Fan, Y., Zhang, Y., Mei, L., Zhu, R., Qin, J., Hu, J., Chen, Z., Hau Ng, Y., Voiry, D., Li, S., Lu, Q., Wang, Q., Yu, J.C., Zeng, Z.: 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. Engl. 62, e202218016 (2023)

    CAS  PubMed  Google Scholar 

  65. Singh, A.K., Kumar, P., Late, D.J., Kumar, A., Patel, S., Singh, J.: 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl. Mater. Today 13, 242–270 (2018)

    Google Scholar 

  66. Suhito, I.R., Angeline, N., Kim, T.H.: Nanomaterial-modified hybrid platforms for precise electrochemical detection of dopamine. BioChip J. 13, 20–29 (2019)

    CAS  Google Scholar 

  67. Ramaraj, S., Sakthivel, M., Chen, S.M., Lou, B.S., Ho, K.C.: Defect and additional active sites on the basal plane of manganese-doped molybdenum diselenide for effective enzyme immobilization: in vitro and in vivo real-time analyses of hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 11, 7862–7871 (2019)

    CAS  PubMed  Google Scholar 

  68. Bahri, M., Shi, B., Elaguech, M.A., Djebbi, K., Zhou, D.M., Liang, L.Y., Tlili, C., Wang, D.Q.: Tungsten disulfide nanosheet-based field-effect transistor biosensor for DNA hybridization detection. Acs Appl. Nano Mater. 5, 5035–5044 (2022)

    CAS  Google Scholar 

  69. Yao, T., Hun, X.: A design for the photoelectrochemical detection of miRNA-221 based on a tungsten diselenide-cysteine-dopamine nanoprobe coupled with mismatched catalytic hairpin assembly target recycling with ultra-low background noise. Chem. Commun. (Camb.) 55, 10380–10383 (2019)

    CAS  PubMed  Google Scholar 

  70. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., Kis, A.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 1–15 (2017)

    Google Scholar 

  71. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D., Lee, Y.H.: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017)

    CAS  Google Scholar 

  72. Su, Z.W., Zhao, Y.J., Huang, Y.Q., Xu, C.Y., Yang, X.L., Wang, B.R., Xu, B.B., Xu, S.Q., Bai, G.X.: Light-driven soft actuator based on graphene and WSe2 nanosheets composite for multimodal motion and remote manipulation. Nano Res. 16, 1313–1319 (2023)

    CAS  Google Scholar 

  73. Ji, Q.X., Jing, Z., Shen, J.J., Hu, Y., Chang, L.F., Lu, L.H., Liu, M.Y., Liu, J.Q., Wu, Y.C.: Dual-responsive soft actuators with integrated sensing function based on 1T-MoS2 composite. Adv. Intell. Syst. 3, 2000240 (2021)

    Google Scholar 

  74. C. Huang, W. Zhang, in 2018 IEEE 1st International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS). (IEEE, 2018), pp. 1–4.

  75. Kim, D., Lee, J., Park, S., Park, J., Seo, M.J., Rhee, W.J., Kim, E.: Target-responsive template structure switching-mediated exponential rolling circle amplification for the direct and sensitive detection of MicroRNA. BioChip J. 16, 422–432 (2022)

    CAS  Google Scholar 

  76. Evans, E.R., Bugga, P., Asthana, V., Drezek, R.: Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington) 21, 673–685 (2018)

    CAS  PubMed  Google Scholar 

  77. Zheng, J.P., Cheng, X.Z., Zhang, H., Bai, X.P., Ai, R.Q., Shao, L., Wang, J.F.: Gold nanorods: the most versatile plasmonic nanoparticles. Chem. Rev. 121, 13342–13453 (2021)

    CAS  PubMed  Google Scholar 

  78. Park, S.: Design of gold nanoparticle and DNA oligomer conjugates for enhancement or suppression of in vitro gene expression. BioChip J. 7, 89–94 (2013)

    CAS  Google Scholar 

  79. Zhang, X.F., Liu, Z.G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016)

    PubMed  PubMed Central  Google Scholar 

  80. Khan, M.A., Al Mamun, M.S., Ara, M.H.: Review on platinum nanoparticles: synthesis, characterization, and applications. Microchem. J. 171, 106840 (2021)

    CAS  Google Scholar 

  81. MubarakAli, D., Kim, H., Venkatesh, P.S., Kim, J.W., Lee, S.Y.: A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine. Appl. Biochem. Biotechnol. 195, 3699–3718 (2023)

    CAS  PubMed  Google Scholar 

  82. Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I.M.I., Qari, H.A., Umar, K., Ibrahim, M.N.M.: Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, X., Chen, Y.H., Zhang, X., Xue, P., Lv, P.F., Yang, Y.Z., Wang, L., Feng, W.: Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 43, 101419 (2022)

    CAS  Google Scholar 

  84. Xing, S.T., Wang, P.P., Liu, S.Q., Xu, Y.H., Zheng, R.M., Deng, Z.F., Peng, Z.F., Li, J.Y., Wu, Y.Y., Liu, L.: A shape-memory soft actuator integrated with reversible electric/moisture actuating and strain sensing. Compos. Sci. Technol. 193, 108133 (2020)

    CAS  Google Scholar 

  85. Addinall, R., Ackermann, T., Kolaric, I.: Soft robotics: transferring theory to application, pp. 147–156. Springer (2015)

    Google Scholar 

  86. Li, Y.L., Liu, W.W., Gao, X.L., Zou, T., Deng, P.Y., Zhao, J., Zhang, T., Chen, Y.D., He, L.Y., Shao, L.H., Yan, Z.Y., Zhang, X.G.: Carbon nanomaterials-PEDOT: PSS based electrochemical ionic soft actuators: recent development in design and applications. Sens. Actuators A-Phys. 354, 114277 (2023)

    CAS  Google Scholar 

  87. Zhou, X., Cao, W.: Flexible and stretchable carbon-based sensors and actuators for soft robots. Nanomaterials (Basel). 13, 316 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xue, J., Gao, Z., Xiao, L.: The application of stimuli-sensitive actuators based on graphene materials. Front. Chem. 7, 803 (2019)

    PubMed  PubMed Central  Google Scholar 

  89. Gao, Y.Y., Zhang, Y.L., Han, B., Zhu, L., Dong, B., Sun, H.B.: Gradient assembly of polymer nanospheres and graphene oxide sheets for dual-responsive soft actuators. ACS Appl. Mater. Interfaces 11, 37130–37138 (2019)

    CAS  PubMed  Google Scholar 

  90. Han, B., Zhang, Y.L., Zhu, L., Li, Y., Ma, Z.C., Liu, Y.Q., Zhang, X.L., Cao, X.W., Chen, Q.D., Qiu, C.W., Sun, H.B.: Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater. 31, e1806386 (2019)

    PubMed  Google Scholar 

  91. Wu, S., Shi, H., Lu, W., Wei, S., Shang, H., Liu, H., Si, M., Le, X., Yin, G., Theato, P., Chen, T.: Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuators. Angew. Chem. Int. Ed. Engl. 60, 21890–21898 (2021)

    CAS  PubMed  Google Scholar 

  92. Zhang, X.H., Tian, M.W., Raza, T., Zhao, H.T., Wang, J., Du, X.J., Zhang, X.J., Qu, L.J.: Soft robotic reinforced by carbon fiber skeleton with large deformation and enhanced blocking forces. Compos. Part B-Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.109099

    Article  Google Scholar 

  93. Kim, D., Shin, M., Choi, J.H., Choi, J.W.: Actuation-augmented biohybrid robot by hyaluronic acid-modified Au nanoparticles in muscle bundles to evaluate drug effects. ACS Sens 7, 740–747 (2022)

    CAS  PubMed  Google Scholar 

  94. Ha, J.H., Shin, H.H., Choi, H.W., Lim, J.H., Mo, S.J., Ahrberg, C.D., Lee, J.M., Chung, B.G.: Electro-responsive hydrogel-based microfluidic actuator platform for photothermal therapy. Lab Chip 20, 3354–3364 (2020)

    CAS  PubMed  Google Scholar 

  95. Ha, T., Park, S., Shin, M., Lee, J.Y., Choi, J.H., Choi, J.W.: Biosensing system for drug evaluation of amyotrophic lateral sclerosis based on muscle bundle and nano-biohybrid hydrogel composed of multiple motor neuron spheroids and carbon nanotubes. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.142284

    Article  Google Scholar 

  96. Tomas, A.R., Goncalves, A.I., Paz, E., Freitas, P., Domingues, R.M.A., Gomes, M.E.: Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. Nanoscale 11, 18255–18271 (2019)

    CAS  PubMed  Google Scholar 

  97. Das, B., Girigoswami, A., Dutta, A., Pal, P., Dutta, J., Dadhich, P., Srivas, P.K., Dhara, S.: Carbon nanodots doped super-paramagnetic iron oxide nanoparticles for multimodal bioimaging and osteochondral tissue regeneration via external magnetic actuation. ACS Biomater. Sci. Eng. 5, 3549–3560 (2019)

    CAS  PubMed  Google Scholar 

  98. Sun, L., Chen, Z., Bian, F., Zhao, Y.: Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907820

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mestre, R., Fuentes, J., Lefaix, L., Wang, J.J., Guix, M., Murillo, G., Bashir, R., Sanchez, S.: Improved performance of biohybrid muscle-based bio-bots doped with piezoelectric boron nitride nanotubes. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202200505

    Article  Google Scholar 

  100. Shin, M., Choi, J.H., Lim, J., Cho, S., Ha, T., Jeong, J.H., Choi, J.W.: Electroactive nano-Biohybrid actuator composed of gold nanoparticle-embedded muscle bundle on molybdenum disulfide nanosheet-modified electrode for motion enhancement of biohybrid robot. Nano Converg. 9, 24 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2022H1D3A2A02093530), by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2019R1A2C3002300), by GRDC Cooperative Hub through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant number RS-2023-00259341).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambrose Ashwin Melvin or Jeong-Woo Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M., Kim, S., Melvin, A.A. et al. Towards Nanomaterial-Incorporated Soft Actuators: from Inorganic/Organic Material-Based Soft Robot to Biomaterial-Based Biohybrid Robot. BioChip J 18, 68–84 (2024). https://doi.org/10.1007/s13206-023-00134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00134-y

Keywords

Navigation