Skip to main content
Log in

Solar Light-Responsive ZnS/Reduced Graphene Oxide Photocatalysts for Enhanced Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The photocatalytic hydrogen (H2) evolution process under solar-light irradiation is a crucial fundamental step for solar energy exploitation. In our study, the ZnS/reduced graphene oxide (ZnS/rGO) composites were prepared using a simple solvothermal approach. The combination of detailed theoretical simulation calculations and comprehensive characterizations indicates that the rGO can greatly increase the capture of light, reduce the band gap, accelerate the transfer of photogenerated electrons, and provide more photo-induced carriers to participate in photocatalytic reactions. The as-formed optimized ZnS/rGO composites exhibit a remarkably superior photocatalytic H2 production capacity of 0.30 mmol/g/h, up to 4.29 times over bare ZnS nanoparticles. The enhanced photocatalytic H2 evolution performance of the ZnS/rGO composites was ascribed to the intimated hetero-interface between components and the efficient transfer of photo-generated electrons from ZnS to rGO. This work provides new insights into the semiconductor-graphene heterojunction photocatalyst for enhancing photocatalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang D, Zhang R, Liu J, Pu X, Cai P (2023) 3D/2D ZnIn2S4/BiFeO3 as S-scheme heterojunction photocatalyst for boosted visible-light hydrogen evolution. J Am Ceram Soc 106:4785–4793

    Article  CAS  Google Scholar 

  2. Zhang D, Liu X, Wang S, Fan B, Shao Z, Su C, Pu X (2021) Enhanced charges separation to improve hydrogen production efficiency by organic piezoelectric film polarization. J Alloy Compd 869:159390

    Article  CAS  Google Scholar 

  3. Zhang C, Ma J, Zhu H, Ding H, Wu H, Zhang K, Zhao X, Wang X, Cheng C (2023) Self-assembled ZnIn2S4/SnS2 QDs S-scheme heterojunction for boosted photocatalytic hydrogen evolution: energy band engineering and mechanism insight. J Alloy Compd 960:170932

    Article  CAS  Google Scholar 

  4. Zhang W, Mei X, Yuan L, Wang G, Li Y, Peng S (2022) Tuning metal-support interaction of NiCu/graphene cocatalysts for enhanced dye-sensitized photocatalytic H2 evolution. Appl Surf Sci 593:153459

    Article  CAS  Google Scholar 

  5. Yuan XJ, Feng S, Zhou Y, Duan XM, Zheng W, Wu W, Zhou YC, Ye ZW, Dai XJ, Wang Y (2023) Enhanced photocatalytic degradation and antibacterial performance by Cu2O/ZIF-8/AgBr composites under visible light. Catal Lett 153:3256–3269

    Article  CAS  Google Scholar 

  6. Zhang C, Wang M, Gao K, Zhu H, Ma J, Fang X, Wang X, Ding Y (2023) Constructing N-Cu-S interface chemical bonds over sns2 for efficient solar-driven photoelectrochemical water splitting. Small 19:2205706

    Article  CAS  Google Scholar 

  7. Dai M, He Z, Zhang P, Li X, Wang S (2022) ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J Mater Sci Technol 122:231–242

    Article  CAS  Google Scholar 

  8. Zhang D, Zhang R, Jiang X, Zhang D, Li H, Liu J, Pu X, Cai P (2023) A novel SnIn4S8/ZnFe2O4 S-scheme heterojunction with excellent magnetic properties and photocatalytic degradation activity for tetracycline. Dalton Trans 52:14956–14966

    Article  PubMed  CAS  Google Scholar 

  9. Bai JQ, Lv LL, Liu JY, Wang Q, Cheng Q, Cai MD, Sun S (2023) Control of CeO2 defect sites for photo- and thermal- synergistic catalysis of CO2 and methanol to DMC. Catal Lett 153:3209–3218

    Article  CAS  Google Scholar 

  10. Wei G, Niu F, Wang Z, Liu X, Feng S, Hu K, Gong X, Hua J (2022) Enhanced photocatalytic H2 evolution based on a polymer/TiO2 film heterojunction. Mater Today Chem 26:101075

    Article  CAS  Google Scholar 

  11. Thsy U, Borisova I, Stoilova O, Rashkov I, Liem N (2018) Electrospun CuS/ZnS–PAN hybrids as efficient visible-light photocatalysts. Catal Lett 148:2756–2764

    Article  Google Scholar 

  12. Xie L, Liu G, Suo R, Xie Z, Liu H, Chen J, Chen J, Lu CZ (2023) Construction of a Z-scheme CdIn2S4/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution. J Alloy Compd 948:169692

    Article  CAS  Google Scholar 

  13. Liu S, Mao Y, Su Z, Fang F, Li K, Wu Y, Liu P, Li P, Chang KA (2023) Z-scheme ZnIn2S4/ZnS heterojunction catalyst: insight into enhanced photocatalytic performance and mechanism. Catal Sci Technol 13:3351–3357

    Article  CAS  Google Scholar 

  14. Zhao F, Law YL, Zhang N, Wang X, Wu W, Luo Z, Wang Y (2023) Constructing spatially separated cage-like Z-scheme heterojunction photocatalyst for enhancing photocatalytic H2 evolution. Small 19:2208266

    Article  CAS  Google Scholar 

  15. Oskenbay A, Salikhov D, Rofman O, Rakhimbek I, Shalabayev Z, Khan N, Soltabayev B, Mentbayeva A, Baláž M, Tatykayev B (2023) Solid-state synthesis of ZnS/ZnO nanocomposites and their decoration with NiS cocatalyst for photocatalytic hydrogen production. Ceram Int 49:32246–32260

    Article  CAS  Google Scholar 

  16. Dong J, Fang W, Yuan H, Xia W, Zeng X, Shangguan W (2022) Few-layered MoS2/ZnCdS/ZnS Heterostructures with an enhanced photocatalytic hydrogen evolution. ACS Appl Energ Mater 5:4893–4902

    Article  CAS  Google Scholar 

  17. Liang S, Wang J, Lin Q, Zhang R, Wang X (2022) Interface-optimized Rh-ZnO/rGO/ZnS heterostructure constructed via Rh-induced dynamic micro-cell growth for efficient photocatalytic hydrogen evolution. J Alloy Compd 904:164021

    Article  CAS  Google Scholar 

  18. Sathishkumar M, Saroja M, Venkatachalam M, Gowthaman P, Kannan S, Balamurugan A (2022) rGO encapsulated ZnS photocatalysts for enhanced hydrogen evolution. Mater Lett 323:132534

    Article  CAS  Google Scholar 

  19. Tian S, Ren H, Liu Z, Miao Z, Tian L, Li J, Liu Y, Wei S, Wang P (2022) ZnS/g-C3N4 heterojunction with Zn-vacancy for efficient hydrogen evolution in water splitting driven by visible light. Catal Commun 164:106422

    Article  CAS  Google Scholar 

  20. Li Y, Zhang W, Li H, Yang T, Peng S, Kao C, Zhang W (2020) Ni-B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem Eng J 394:124928

    Article  CAS  Google Scholar 

  21. Ahmad MI, Chen S, Yu H, Quan X (2023) Electronic tuning of SnO2 by rGO nanosheets for highly efficient photocatalytic hydrogen peroxide evolution. ACS Sustain Chem Eng 11:10520–10533

    Article  CAS  Google Scholar 

  22. Cheng Z, Huang SH, Wang Y, Xiao T, Wan JQ, Yan ZC, Xie QM, Xu YY (2023) Graphene-supported Fe–N catalysts for activation of persulfate for trichlorophenol degradation by surface radicals. Catal Lett 153:3122–3135

    Article  Google Scholar 

  23. Xue C, Li H, An H, Yang B, Wei J, Yang G (2018) NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “Bridge” toward visible-light-driven hydrogen evolution. ACS Catal 8:1532–1545

    Article  CAS  Google Scholar 

  24. Wang YF, Feng W, Liu QY, Li ZY, Yang XL, He P, Wang HN, Liu QZ, Wu J, Qi YF (2023) In-Situ hydrothermal synthesis of SnS2/SnO2/rGO nanocomposites with enhanced photogenerated electron transfer for photoreduction of CO2 to CH4. Catal Lett 153:1284–1293

    Article  CAS  Google Scholar 

  25. Wang T, Yue D, Li X, Zhao Y (2020) Lead-free double perovskite Cs2AgBiBr 6/RGO composite for efficient visible light photocatalytic H2 evolution. Appl Catal B Environ 268:118399

    Article  CAS  Google Scholar 

  26. Li H, Lin C, Yang Y, Dong C, Min Y, Shi X, Wang L, Lu S, Zhang K (2023) Boosting reactive oxygen species generation using inter-facet edge rich WO3 arrays for photoelectrochemical conversion. Angew Chem Int Ed 62:e202210804

    Article  CAS  Google Scholar 

  27. Bigdeli Tabar M, Elahi SM, Ghoranneviss M, Yousefi R (2020) The role of the Se-rich and Se-poor conditions in the photocatalytic performance of ZnSe/rGO nanocomposites. Appl Surf Sci 513:145819

    Article  CAS  Google Scholar 

  28. Gao Z, Chen K, Wang L, Bai B, Liu H, Wang Q (2020) Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Appl Catal B Environ 268:118462

    Article  CAS  Google Scholar 

  29. Xu W, Tian W, Meng L, Cao F, Li L (2021) Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv Energy Mater 11:2003500

    Article  CAS  Google Scholar 

  30. Li H, Gong H, Jin Z (2020) Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Appl Catal B Environ 307:121166

    Article  Google Scholar 

  31. Peng Y, Geng M, Yu J, Zhang Y, Tian F, Guo YN, Zhang D, Yang X, Li Z, Li Z, Zhang S (2021) Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Appl Catal B Environ 298:120570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Anhui Educational Committee (KJ2020A0474), the Anhui Jianzhu University Natural Science Research Project (JZ202222), and the project of PhD Research Fund (Grant No. 2019QDZ23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5251 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Xj., Wang, Xf., Wang, M. et al. Solar Light-Responsive ZnS/Reduced Graphene Oxide Photocatalysts for Enhanced Hydrogen Evolution. Catal Lett (2023). https://doi.org/10.1007/s10562-023-04542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04542-5

Keywords

Navigation