Skip to main content
Log in

Josephson transport across T-shaped and series-configured double quantum dots system at infinite-\(\textit{U}\) limit

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The charge transport has been analyzed theoretically across a T-shaped and series-configured double quantum dots Josephson junction by implementing the Slave Boson mean field approximation at an infinite-\(\textit{U}\) limit. It has been shown that Andreev bound states and Josephson current can be tuned by varying the interdot tunneling (t) and quantum dots energy level. For the T-shape configuration of the quantum dots, an extra path is available for the transport of electrons which causes the interference destruction between two paths. For decoupled quantum dots with energy level \(\epsilon _{d1}=\epsilon _{d2}=0\), the energy of Andreev bound states crosses at Fermi energy, and Josephson current shows a discontinuity at phase difference \(\phi =\pm \pi \). On the other hand, for coupled quantum dots the lower and upper Andreev bound states have a finite spacing, the Josephson current exhibits a sinusoidal nature and its magnitude suppresses with increasing interdot tunneling strength. While in the series configuration, with increment in interdot tunneling, Josephson current increases and shows a discontinuity at phase difference \(\phi =\pm \pi \), once the system gets resonant tunneling for \(t=0.5\Gamma \) with quantum dots energy level \(\epsilon _{d1}=\epsilon _{d2}=0.5\Gamma \). Further, we also analyze the nature of the energy of Andreev bound states and Josephson current with the quantum dots energy level in both configurations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data related to this paper is stored in a data repository. The data can be provided upon reasonable request, the authors note.

References

  1. B.D. Josephson, Possible new effects in superconductive tunnelling. Phy. Lett. 1, 251–253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  ADS  Google Scholar 

  2. P.W. Anderson, How Josephson discovered his effect. Phys. Today 23(11), 23–29 (1970). https://doi.org/10.1063/1.3021826

    Article  Google Scholar 

  3. Kouwenhoven et al., Few-electron quantum dots. Rep. Progress Phys. 64(6), 701 (2001). https://doi.org/10.1088/0034-4885/64/6/201

    Article  ADS  Google Scholar 

  4. M.A. Kastner, Artificial atoms. Phys. Today (1993). https://doi.org/10.1063/1.881393

    Article  Google Scholar 

  5. A. Martín-Rodero, A. Levy Yeyati, Josephson and Andreev transport through quantum dots. Adv. Phys. 60(6), 899–958 (2011). https://doi.org/10.1038/nnano.2010.173

    Article  ADS  Google Scholar 

  6. D. Franceschi et al., Hybrid superconductor-quantum dot devices. Nat. Nanotechnol. 5(10), 703–711 (2010). https://doi.org/10.1038/nnano.2010.173

    Article  ADS  Google Scholar 

  7. Eichler et al., Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99, 126602 (2007). https://doi.org/10.1103/PhysRevLett.99.126602

    Article  ADS  Google Scholar 

  8. M.R. Buitelaar et al., Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002). https://doi.org/10.1103/PhysRevLett.89.256801

    Article  ADS  Google Scholar 

  9. T. Sand-Jespersen et al., Kondo-enhanced Andreev tunneling in inas nanowire quantum dots. Phys. Rev. Lett. 99(12), 126603 (2007). https://doi.org/10.1103/PhysRevLett.99.126603

    Article  ADS  Google Scholar 

  10. K.G. Rasmussen et al., Kondo resonance enhanced supercurrent in single wall carbon nanotube Josephson junctions. New J. Phys. (2007). https://doi.org/10.1088/1367-2630/9/5/124

    Article  Google Scholar 

  11. J.P. Cleuziou et al., Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. (2006). https://doi.org/10.1038/nnano.2006.54

    Article  Google Scholar 

  12. R. Maurand et al., First-order \(0-\pi \) quantum phase transition in the Kondo regime of a superconducting carbon-nanotube quantum dot. Phys. Rev. X 2, 011009 (2012). https://doi.org/10.1103/PhysRevX.2.011009

    Article  Google Scholar 

  13. J.A.V. Dam et al., Supercurrent reversal in quantum dots. Nature (2006). https://doi.org/10.1038/nature05018

    Article  Google Scholar 

  14. S. Verma, Ajay: Influence of superconductivity on the magnetic moment of quantum impurity embedded in bcs superconductor. J. Phys. Condens. Matter (2020). https://doi.org/10.1088/1361-648X/abcc0e

    Article  Google Scholar 

  15. Buitelaar et al., Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003). https://doi.org/10.1103/PhysRevLett.91.057005

    Article  ADS  Google Scholar 

  16. P. Jarillo-Herrero et al., Quantum supercurrent transistors in carbon nanotubes. Nature (2006). https://doi.org/10.1038/nature04550

    Article  Google Scholar 

  17. H.I. Jørgensen et al., Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime. Phys. Rev. Lett. 96, 207003 (2006). https://doi.org/10.1103/PhysRevLett.96.207003

    Article  ADS  Google Scholar 

  18. J.H. Ingerslev et al., Critical current \(0 - \pi \) transition in designed Josephson quantum dot junctions. Nano Lett. 7(8), 2441–2445 (2007). https://doi.org/10.1021/nl071152w

    Article  Google Scholar 

  19. H.I. Jørgensen et al., Critical and excess current through an open quantum dot: temperature and magnetic-field dependence. Phys. Rev. B 79, 155441 (2009). https://doi.org/10.1103/PhysRevB.79.155441

    Article  ADS  Google Scholar 

  20. J.D. Pillet et al., Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nat. Phys. (2010). https://doi.org/10.1038/nphys1811

    Article  Google Scholar 

  21. L. Hofstetter et al., Cooper pair splitter realized in a two-quantum-dot y-junction. Nature (2009). https://doi.org/10.1038/nature08432

    Article  Google Scholar 

  22. L.G. Herrmann et al., Carbon nanotubes as cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010). https://doi.org/10.1103/PhysRevLett.104.026801

    Article  ADS  Google Scholar 

  23. E. Vecino et al., Josephson current through a correlated quantum level: Andreev states and \(\pi \) junction behavior. Phys. Rev. B 68(3), 035105 (2003). https://doi.org/10.1103/PhysRevB.68.035105

    Article  ADS  Google Scholar 

  24. M.-S. Choi et al., Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70(2), 020502 (2004). https://doi.org/10.1103/PhysRevB.70.020502

    Article  ADS  Google Scholar 

  25. J.S. Lim et al., Andreev bound states in the Kondo quantum dots coupled to superconducting leads. J. Phys. Condens. Matter 20(41), 415225 (2008). https://doi.org/10.1088/0953-8984/20/41/415225

    Article  Google Scholar 

  26. Y. Zhu et al., Andreev bound states and the \(\pi \)-junction transition in a superconductor/quantum-dot/superconductor system. J. Phys. Condens. Matter 13(39), 8783 (2001). https://doi.org/10.1088/0953-8984/13/39/307

    Article  ADS  Google Scholar 

  27. C.A. Aguirre, Q.D. Martins, J. Barba-Ortega, Vortices in a superconducting two-band disk: role of the Josephson and bi-quadratic coupling. Phys. C (Amsterdam, Neth.) 581, 1353818 (2021). https://doi.org/10.1016/j.physc.2021.1353818

    Article  ADS  Google Scholar 

  28. K. Christoph et al., Josephson current through a single Anderson impurity coupled to bcs leads. Phys. Rev. B 77(2), 024517 (2008). https://doi.org/10.1103/PhysRevB.77.024517

    Article  Google Scholar 

  29. S.-g Cheng, Q.-f Sun, Josephson current transport through t-shaped double quantum dots. J. Phys. Condens. Matter 20(50), 505202 (2008). https://doi.org/10.1088/0953-8984/20/50/505202

    Article  Google Scholar 

  30. L. Rosa et al., Josephson current through a Kondo molecule. Phys. Rev. B 75, 045132 (2007). https://doi.org/10.1103/PhysRevB.75.045132

    Article  Google Scholar 

  31. M. Žonda et al., Generalized atomic limit of a double quantum dot coupled to superconducting leads. Phys. Rev. B 107, 115407 (2023). https://doi.org/10.1103/PhysRevB.107.115407

    Article  ADS  Google Scholar 

  32. Ortega-Taberner et al., Anomalous Josephson current through a driven double quantum dot. Phys. Rev. B 107, 115165 (2023). https://doi.org/10.1103/PhysRevB.107.115165

    Article  ADS  Google Scholar 

  33. F. Chi, S.S. Li, Current-voltage characteristics in strongly correlated double quantum dots. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1939065

    Article  Google Scholar 

  34. Z. Yu et al., Probing spin states of coupled quantum dots by a dc Josephson current. Phys. Rev. B 66, 085306 (2002). https://doi.org/10.1103/PhysRevB.66.085306

    Article  ADS  Google Scholar 

  35. S. Droste et al., Josephson current through interacting double quantum dots with spin-orbit coupling. J. Phys. Condens. Matter (2012). https://doi.org/10.1088/0953-8984/24/41/415301

    Article  Google Scholar 

  36. G. Rajput, R. Kumar, Ajay: tunable Josephson effect in hybrid parallel coupled double quantum dot-superconductor tunnel junction. Superlattices Microstruct. 73, 193–202 (2014). https://doi.org/10.1016/j.spmi.2014.05.029

    Article  ADS  Google Scholar 

  37. R. Žitko et al., Josephson current in strongly correlated double quantum dots. Phys. Rev. Lett. 105, 116803 (2010). https://doi.org/10.1103/PhysRevLett.105.116803

    Article  ADS  Google Scholar 

  38. J.C.E. Saldaña et al., Supercurrent in a double quantum dot. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.121.257701

    Article  Google Scholar 

  39. H. Haug, A.-P. Jauho et al., Quantum Kinetics in Transport and Optics of Semiconductors, vol. 2 (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-73564-9

    Book  Google Scholar 

  40. L.V. Keldysh et al., Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20(4), 1018–1026 (1965)

    MathSciNet  Google Scholar 

  41. D.J. Luitz et al., Understanding the Josephson current through a Kondo-correlated quantum dot. Phys. Rev. Lett. 108, 227001 (2012). https://doi.org/10.1103/PhysRevLett.108.227001

    Article  ADS  Google Scholar 

  42. B. Probst et al., Signatures of nonlocal cooper-pair transport and of a singlet-triplet transition in the critical current of a double-quantum-dot Josephson junction. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.94.155445

    Article  Google Scholar 

  43. B. Sothmann et al., Josephson response of a conventional and a noncentrosymmetric superconductor coupled via a double quantum dot. Phys. Rev. B 92, 014504 (2015). https://doi.org/10.1103/PhysRevB.92.014504

    Article  ADS  Google Scholar 

  44. X.Q. Wang, G.Y. Yi, W.J. Gong, Effect of interdot coulomb interaction on the Josephson phase transition in a double-quantum-dot junction. Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.05.026

    Article  Google Scholar 

  45. M.-S. Choi et al., Spin-dependent Josephson current through double quantum dots and measurement of entangled electron states. Phys. Rev. B 62, 13569–13572 (2000). https://doi.org/10.1103/PhysRevB.62.13569

    Article  ADS  Google Scholar 

  46. J.F. Rentrop et al., Nonequilibrium transport through a Josephson quantum dot. Phys. Rev. B 89, 235110 (2014). https://doi.org/10.1103/PhysRevB.89.235110

    Article  ADS  Google Scholar 

  47. T. Domański et al., Josephson-phase-controlled interplay between correlation effects and electron pairing in a three-terminal nanostructure. Phys. Rev. B 95, 045104 (2017). https://doi.org/10.1103/PhysRevB.95.045104

    Article  ADS  Google Scholar 

  48. K. Grove-Rasmussen et al., Yu-Shiba-Rusinov screening of spins in double quantum dots. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-04683-x

    Article  Google Scholar 

  49. S. Baba et al., Gate tunable parallel double quantum dots in inas double-nanowire devices. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4997646

    Article  Google Scholar 

  50. A.Y. Kasumov et al., Proximity effect in a superconductor-metallofullerene-superconductor molecular junction. Phys. Rev. B 72, 033414 (2005). https://doi.org/10.1103/PhysRevB.72.033414

    Article  ADS  Google Scholar 

  51. W.G. van der Wiel et al., Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002). https://doi.org/10.1103/RevModPhys.75.1

    Article  ADS  Google Scholar 

  52. M. Nilsson et al., Parallel-coupled quantum dots in inas nanowires. Nano Lett. (2017). https://doi.org/10.1021/acs.nanolett.7b04090

    Article  Google Scholar 

  53. P. Zhang et al., Signatures of Andreev blockade in a double quantum dot coupled to a superconductor. Phys. Rev. Lett. 128, 046801 (2022). https://doi.org/10.1103/PhysRevLett.128.046801

    Article  ADS  Google Scholar 

  54. Y. Avishai et al., Superconductor-quantum dot-superconductor junction in the Kondo regime. Phys. Rev. B 67, 041301 (2003). https://doi.org/10.1103/PhysRevB.67.041301

    Article  ADS  Google Scholar 

  55. A.L. Yeyati et al., Nonequilibrium dynamics of Andreev states in the Kondo regime. Phys. Rev. Lett. 91, 266802 (2003). https://doi.org/10.1103/PhysRevLett.91.266802

    Article  ADS  Google Scholar 

  56. R.S. Deacon et al., Cooper pair splitting in parallel quantum dot Josephson junctions. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8446

    Article  Google Scholar 

  57. R. Raimondi, P. Schwab, Andreev tunneling in strongly interacting quantum dots. Superlattices Microstruct. (1999). https://doi.org/10.1006/spmi.1999.0723

    Article  Google Scholar 

  58. P. Wölfle, Slave boson theories of correlated electron systems. J. Low Temp. Phys. (1995). https://doi.org/10.1007/BF00752353

    Article  Google Scholar 

  59. T.H. Lee et al., Efficient slave-boson approach for multiorbital two-particle response functions and superconductivity. Phys. Rev. X (2021). https://doi.org/10.1103/PhysRevX.11.041040

    Article  Google Scholar 

  60. P. Coleman, New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984). https://doi.org/10.1103/PhysRevB.29.3035

    Article  ADS  Google Scholar 

  61. P. Coleman, Large n as a classical limit \(\frac{1}{N}\approx \ni \) of mixed valence. J. Magn. Magn. Mater. 47(48), 323 (1985)

    Article  ADS  Google Scholar 

  62. M. Lavagna, A.J. Millis, P.A. Lee, d -wave superconductivity in the large-degeneracy limit of the Anderson lattice. Phys. Rev. Lett. 58, 266–269 (1987). https://doi.org/10.1103/PhysRevLett.58.266

    Article  ADS  Google Scholar 

  63. G. Kotliar, A.E. Ruckenstein, New functional integral approach to strongly correlated fermi systems: The Gutzwiller approximation as a saddle point. Phys. Rev. Lett. 57, 1362–1365 (1986). https://doi.org/10.1103/PhysRevLett.57.1362

    Article  ADS  MathSciNet  Google Scholar 

  64. P. Schwab, R. Raimondi, Andreev tunneling in quantum dots: a slave-boson approach. Phys. Rev. B 59, 1637–1640 (1999). https://doi.org/10.1103/PhysRevB.59.1637

    Article  ADS  Google Scholar 

  65. T. Chamoli, Ajay: Andreev bound states in superconductor-quantum dot-superconductor junction at infinite-U limit. J. Supercond. Novel Magn. (2022). https://doi.org/10.1007/s10948-021-06002-w

    Article  Google Scholar 

  66. T. Chamoli, Ajay: Josephson transport through parallel double coupled quantum dots at infinite-U limit. Eur. Phys. J. B 95(9), 163 (2022). https://doi.org/10.1140/epjb/s10051-022-00425-7

  67. B.-K. Kim et al., Transport measurement of Andreev bound states in a Kondo-correlated quantum dot. Phys. Rev. Lett. 110, 076803 (2013). https://doi.org/10.1103/PhysRevLett.110.076803

  68. J.O. Island et al., Proximity-induced Shiba states in a molecular junction. Phys. Rev. Lett. 118, 117001 (2017). https://doi.org/10.1103/PhysRevLett.118.117001

    Article  ADS  Google Scholar 

  69. G. Wendin, V. Shumeiko, Quantum bits with Josephson junctions. Low Temp. Phys. 33(9), 724–744 (2007). https://doi.org/10.1063/1.2780165

    Article  ADS  Google Scholar 

  70. Arnault et al., Dynamical stabilization of multiplet supercurrents in multiterminal Josephson junctions. Nano Lett. 22(17), 7073–7079 (2022). https://doi.org/10.1021/acs.nanolett.2c01999

  71. G.-Y. Yi et al., Suppression of the \(0-\pi \) transition in a Josephson junction with parallel double-quantum-dot barriers. Phys. Rev. B 98, 035438 (2018). https://doi.org/10.1103/PhysRevB.98.035438

    Article  ADS  Google Scholar 

  72. A. Vekris et al., Josephson junctions in double nanowires bridged by in-situ deposited superconductors. Phys. Rev. Res. 3, 033240 (2021). https://doi.org/10.1103/PhysRevResearch.3.033240

    Article  Google Scholar 

  73. A. Bargerbos et al., Singlet-doublet transitions of a quantum dot Josephson junction detected in a transmon circuit. PRX Quantum 3, 030311 (2022). https://doi.org/10.1103/PRXQuantum.3.030311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors offer their gratitude to the DST-SER-1644-PHY 2021-22 research project for financial support. Bhupendra Kumar, a research scholar in the Department of Physics, IIT Roorkee, also acknowledges the support from the Ministry of Education (MoE), India in the form of a Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The concept was put forth by Ajay, who also monitored the project. The idea was put forward by Bhupendra Kumar, who also carried out the calculations. Sachin Verma and Tanuj Chamoli discussed the findings and helped to write the final article.

Corresponding author

Correspondence to Bhupendra Kumar.

Ethics declarations

Conflict of interest

None. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Verma, S., Chamoli, T. et al. Josephson transport across T-shaped and series-configured double quantum dots system at infinite-\(\textit{U}\) limit. Eur. Phys. J. B 96, 168 (2023). https://doi.org/10.1140/epjb/s10051-023-00640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00640-w

Navigation