Skip to main content
Log in

Review of the technological advances for the preparation of colloidal dispersions at high production throughput using microporous membrane systems

  • Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The membrane emulsification (ME) method is a highly promising technology that utilizes synthetic microporous membranes to produce high-quality, droplet-size controlled dispersions and colloidal particles at low shear stress and low energy input. This technology has enabled the preparation of microspheres, microcarriers, microcapsules, polymers, and gel microbeads with tunable properties, which find extensive applications in drug delivery systems and the formulation of novel products in the cosmetics, chemical, pharmaceutical, and food industries. Despite its potential for use in various processes, the adoption of ME technology has been limited by its low production throughput. To overcome this limitation, numerous approaches have been developed over the years, including new ME methodologies, fabrication of new membranes, use of new additives and formulations, and optimization of process conditions. This review comprehensively explores these approaches and highlights the major process parameters that control production throughput and their relationship to membrane and ingredient properties. While a single technique may not be universally applicable in all fields, utilizing multiple strategies can significantly enhance the production throughput of the ME method. A thorough understanding of the ingredients’ nature, final product requirements, and process limitations can aid in determining the most suitable strategies to employ in different fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2023, Elsevier

Fig. 4

Copyright 2023, Elsevier

Fig. 5

Copyright 2023, Elsevier

Fig. 6

Copyright 2023, Elsevier

Fig. 7

Copyright 2023, Elsevier

Fig. 8

Copyright 2023, Elsevier

Fig. 9

Copyright 2023, Elsevier

Fig. 10

Copyright 2023, Elsevier

Fig. 11

Copyright 2023, Elsevier

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Copyright 2023, Elsevier

Fig. 18

Copyright 2023, Elsevier

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

BSA:

Bovine serum albumin

CTAB:

Cetyltrimethylammonium ammonium bromide

EO:

Ethylene oxide

LEO-10:

Dodecyl alcohol-10-glycol ether

PEG:

Polyethylene glycol

PLGA:

Poly (lactic-co-glycolic acid)

PO:

Propylene oxide

SDS:

Sodium dodecyl sulfate

Tween 20:

Polyoxyethylene (20) sorbitan monolaurate

TOMAC:

Tri-n-octyl methylammonium chloride

AAM:

Anodic alumina membranes

PES:

Polyether sulphone membrane

PSF:

Polysulfone membrane

PTFE:

Polytetrafluoroethylene

ZrO2:

Zirconia ceramic membrane

CMC:

Critical micelle concentration

CV:

Coefficient of variation

HLB:

Hydrophilic-lipophilic balance

ME:

Membrane emulsification

SEM:

Scanning electron microscopy

SPG:

Shirasu porous glass

span:

Droplet size distribution

O/W:

Oil-in-water

W/O:

Water-in-oil

\({D}_{i}\) :

Inner membrane diameter, m

\({D}_{{\text{p}}}\) :

Mean pore size, m

\({J}_{{\text{d}}}\) :

Dispersed phase flux, m3/m2s

L :

Membrane length, m

\({L}_{{\text{p}}}\) :

Pore length, m

\({P}_{{\text{cap}}}\) :

Capillary pressure, Pa

Re:

Reynolds number, /

\({R}_{{\text{m}}}\) :

Membrane hydraulic resistance, Pa·s/m2

\({V}_{c}\) :

Velocity continuous phase, m/s

\({V}_{{\text{d}}}\) :

Velocity dispersed phase, m/s

\(\gamma\) :

Interfacial tension, N/m

\({\delta }_{{\text{m}}}\) :

Membrane thickness, m

\(\Delta P\) :

Pressure drop (transmembrane pressure), pa

\({\Delta P}_{t}\) :

Pressure drop due to friction resistance, Pa

ε :

Membrane porosity, /

\({\eta }_{c}\) :

Viscosity continuous phase, Pa·s

\({\eta }_{d}\) :

Viscosity dispersed phase, Pa·s

\(\theta\) :

Contact angle, (°)

\(\lambda\) :

Friction factor, /

ξ :

Mean tortuosity factor, /

\({\rho }_{c}\)Density continuous phase, kg/m:

3

\(\tau\) :

Shear stress, Pa

c:

Continuous phase

d:

Dispersed phase

m:

Membrane

p:

Pore

References

  1. Schröder V, Schubert H (1999) Production of emulsions using microporous, ceramic membranes. Colloids Surf A Physicochem Eng Asp 152:103–109. https://doi.org/10.1016/S0927-7757(98)00688-8

    Article  Google Scholar 

  2. Nakashima T, Shimizu M, Kukizaki M (2000) Particle control of emulsion by membrane emulsification and its applications. Adv Drug Deliv Rev 45:47–56. https://doi.org/10.1016/S0169-409X(00)00099-5

    Article  CAS  PubMed  Google Scholar 

  3. Karbstein H, Schubert H (1995) Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem Eng Process 34:205–211. https://doi.org/10.1016/0255-2701(94)04005-2

    Article  CAS  Google Scholar 

  4. Piacentini E, Dragosavac M, Giorno L (2017) Pharmaceutical particles design by membrane emulsification: preparation methods and applications in drug delivery. Curr Pharm Des 23:302–318. https://doi.org/10.2174/1381612823666161117160940

    Article  CAS  PubMed  Google Scholar 

  5. Albisa A, Piacentini E, Arruebo M et al (2018) Sustainable production of drug-loaded particles by membrane emulsification. ACS Sustain Chem Eng 6:6663–6674. https://doi.org/10.1021/acssuschemeng.8b00401

    Article  CAS  Google Scholar 

  6. GoranT V, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluidics 13:151–178. https://doi.org/10.1007/s10404-012-0948-0

    Article  CAS  Google Scholar 

  7. Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc 74:317–321. https://doi.org/10.1007/s11746-997-0143-8

    Article  CAS  Google Scholar 

  8. Utada AS, Lorenceau E, Link DR et al (1979) (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. https://doi.org/10.1126/science.1109164

    Article  CAS  Google Scholar 

  9. Sohrabi S, Kassir N, Keshavarz Moraveji M (2020) Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 10:27560–27574. https://doi.org/10.1039/D0RA04566G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joscelyne SM, Trägårdh G (2000) Membrane emulsification — a literature review. J Memb Sci 169:107–117. https://doi.org/10.1016/S0376-7388(99)00334-8

    Article  CAS  Google Scholar 

  11. Gijsbertsen-Abrahamse A (2004) Status of cross-flow membrane emulsification and outlook for industrial application. J Memb Sci 230:149–159. https://doi.org/10.1016/j.memsci.2003.11.006

    Article  CAS  Google Scholar 

  12. De Luca G, Sindona A, Giorno L, Drioli E (2004) Quantitative analysis of coupling effects in cross-flow membrane emulsification. J Memb Sci 229:199–209. https://doi.org/10.1016/j.memsci.2003.09.024

    Article  CAS  Google Scholar 

  13. Vladisavljević GT (2015) Structured microparticles with tailored properties produced by membrane emulsification. Adv Colloid Interface Sci 225:53–87. https://doi.org/10.1016/j.cis.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  14. Daly AC, Riley L, Segura T, Burdick JA (2019) Hydrogel microparticles for biomedical applications. Nat Rev Mater 5:20–43. https://doi.org/10.1038/s41578-019-0148-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong W, Long L, Ji J et al (2023) Microencapsulated bufalin: From membrane preparation to microspheres tailoring, and sustained release. Food Bioprod Process 140:60–71. https://doi.org/10.1016/J.FBP.2023.04.008

    Article  CAS  Google Scholar 

  16. Konovalova V, Kolesnyk I, Savchenko M et al (2023) Preparation of chitosan water-in-oil emulsions by stirred cell membrane emulsification. Colloids Surf A Physicochem Eng Asp 661:130929. https://doi.org/10.1016/J.COLSURFA.2023.130929

    Article  CAS  Google Scholar 

  17. Wang LY, Ma GH, Su ZG (2005) Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 106:62–75. https://doi.org/10.1016/J.JCONREL.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  18. Wang LY, Gu YH, Zhou QZ et al (2006) Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B Biointerfaces 50:126–135. https://doi.org/10.1016/J.COLSURFB.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  19. Vladisavljević GT, Williams RA (2005) Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interface Sci 113:1–20. https://doi.org/10.1016/j.cis.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Vladisavljević GT (2016) Recent advances in the production of controllable multiple emulsions using microfabricated devices. Particuology 24:1–17. https://doi.org/10.1016/j.partic.2015.10.001

    Article  CAS  Google Scholar 

  21. Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79:209–218. https://doi.org/10.1002/jctb.969

    Article  CAS  Google Scholar 

  22. Peng SJ, Williams RA (1998) Controlled production of emulsions using a crossflow membrane. Part I: Droplet formation from a single pore. Chem Eng Res Des 76:894–901. https://doi.org/10.1205/026387698525694

    Article  CAS  Google Scholar 

  23. Lambrich U, Schubert H (2005) Emulsification using microporous systems. J Memb Sci 257:76–84. https://doi.org/10.1016/j.memsci.2004.12.040

    Article  CAS  Google Scholar 

  24. Vladisavljević GT, Schubert H (2002) Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass ( SPG ) membranes. Desalination 144:167–172

    Article  Google Scholar 

  25. Abrahamse AJ, Van Lierop R, Van der Sman RGM et al (2002) Analysis of droplet formation and interactions during cross-flow membrane emulsification. J Memb Sci 204:125–137. https://doi.org/10.1016/S0376-7388(02)00028-5

    Article  CAS  Google Scholar 

  26. Hu Y, Gong F, Yan X et al (2022) Effects of membrane pore activation on microporous membrane emulsification process and emulsion droplet formation. Colloid Polym Sci 300:297–307. https://doi.org/10.1007/s00396-021-04915-5

    Article  CAS  Google Scholar 

  27. Suárez MA, Gutiérrez G, Matos M et al (2014) Emulsification using tubular metallic membranes. Chem Eng Process 81:24–34. https://doi.org/10.1016/j.cep.2014.04.008

    Article  CAS  Google Scholar 

  28. Pathak M (2011) Numerical simulation of membrane emulsification: Effect of flow properties in the transition from dripping to jetting. J Memb Sci 382:166–176. https://doi.org/10.1016/j.memsci.2011.08.005

    Article  CAS  Google Scholar 

  29. Kobayashi I, Nakajima M, Mukataka S (2003) Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids Surf A Physicochem Eng Asp 229:33–41. https://doi.org/10.1016/j.colsurfa.2003.08.005

    Article  CAS  Google Scholar 

  30. Yuan Q, Hou R, Aryanti N et al (2008) Manufacture of controlled emulsions and particulates using membrane emulsification. Desalination 224:215–220. https://doi.org/10.1016/j.desal.2007.02.095

    Article  CAS  Google Scholar 

  31. Giorno L, De Luca G, Figoli A et al (2009) Membrane emulsification: principles and applications. In: Drioli E, Giorno L (eds) Membrane operations. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 463–497

    Chapter  Google Scholar 

  32. Maan AA, Schroën K, Boom R (2011) Spontaneous droplet formation techniques for monodisperse emulsions preparation - perspectives for food applications. J Food Eng 107:334–346. https://doi.org/10.1016/j.jfoodeng.2011.07.008

    Article  Google Scholar 

  33. Mugabi J (2019) Study on high throughput production of monodispersed emulsion by swirl flow and intramembrane premix membrane emulsification methods. Kyushu University, Ph.D.

    Google Scholar 

  34. Li Z, Dai L, Wang D et al (2018) Stabilization and rheology of concentrated emulsions using the natural emulsifiers Quillaja saponins and rhamnolipids. J Agric Food Chem 66:3922–3929. https://doi.org/10.1021/acs.jafc.7b05291

    Article  CAS  PubMed  Google Scholar 

  35. Eisinaite V, Juraite D, Schroën K, Leskauskaite D (2016) Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system. Food Chem 206:59–66. https://doi.org/10.1016/j.foodchem.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  36. Williams RA, Peng SJ, Wheeler DA et al (1998) Controlled production of emulsions using a crossflow membrane. Chem Eng Res Des 76:902–910. https://doi.org/10.1205/026387698525702

    Article  CAS  Google Scholar 

  37. Spyropoulos F, Lloyd DM, Hancocks RD, Pawlik AK (2014) Advances in membrane emulsification. Part B: recent developments in modeling and scale-up approaches. J Sci Food Agric 94:628–638. https://doi.org/10.1002/jsfa.6443

    Article  CAS  PubMed  Google Scholar 

  38. Zanatta V, Rezzadori K, Penha FM et al (2017) Stability of oil-in-water emulsions produced by membrane emulsification with microporous ceramic membranes. J Food Eng 195:73–84. https://doi.org/10.1016/j.jfoodeng.2016.09.025

    Article  CAS  Google Scholar 

  39. Vladisavljević GT, Schubert H (2003) Preparation of emulsions with a narrow particle size distribution using microporous α-alumina membranes. J Dispers Sci Technol 24:811–819. https://doi.org/10.1081/DIS-120025549

    Article  CAS  Google Scholar 

  40. Suárez MA, Gutiérrez G, Coca J, Pazos C (2013) Stirred tank membrane emulsification using flat metallic membranes: a dimensional analysis. Chem Eng Process 69:31–43. https://doi.org/10.1016/j.cep.2013.02.005

    Article  CAS  Google Scholar 

  41. Holdich R, Dragosavac M, Williams B, Trotter S (2020) High throughput membrane emulsification using a single-pass annular flow crossflow membrane. AIChE J 66:1–10. https://doi.org/10.1002/aic.16958

    Article  CAS  Google Scholar 

  42. Joscelyne SM, Trägårdh G (1999) Food emulsions using membrane emulsification: conditions for producing small droplets. J Food Eng 39:59–64. https://doi.org/10.1016/S0260-8774(98)00146-0

    Article  Google Scholar 

  43. Suzuki K, Fujiki I, HAGURA Y, (1998) Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Science and Technology International, Tokyo 4:164–167. https://doi.org/10.3136/fsti9596t9798.4.164

    Article  Google Scholar 

  44. Gehrmann S, Bunjes H (2018) Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification. Eur J Pharm Biopharm 126:140–148. https://doi.org/10.1016/j.ejpb.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  45. Wagdare NA, Marcelis ATM, Ho OB et al (2010) High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J Memb Sci 347:1–7. https://doi.org/10.1016/j.memsci.2009.09.057

    Article  CAS  Google Scholar 

  46. Katoh R, Asano Y, Furuya A et al (1996) Preparation of food emulsions using a membrane emulsification system. J Memb Sci 113:131–135. https://doi.org/10.1016/0376-7388(95)00227-8

    Article  CAS  Google Scholar 

  47. Yamazaki N, Yuyama H, Nagai M et al (2002) A comparison of membrane emulsification obtained using SPG (Shirasu porous glass) and PTFE [poly(tetrafluoroethylene)] membranes. J Dispers Sci Technol 23:279–292. https://doi.org/10.1080/01932690208984204

    Article  CAS  Google Scholar 

  48. Yasuno M, Nakajima M, Iwamoto S et al (2002) Visualization and characterization of SPG membrane emulsification. J Memb Sci 210:29–37. https://doi.org/10.1016/S0376-7388(02)00371-X

    Article  CAS  Google Scholar 

  49. Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 317:146–154. https://doi.org/10.1016/j.colsurfa.2007.10.005

    Article  CAS  Google Scholar 

  50. Vladisavljević GT, Lambrich U, Nakajima M, Schubert H (2004) Production of O/W emulsions using SPG membranes, ceramic α-aluminum oxide membranes, microfluidizer and a silicon microchannel plate—a comparative study. Colloids Surf A Physicochem Eng Asp 232:199–207. https://doi.org/10.1016/j.colsurfa.2003.10.026

    Article  CAS  Google Scholar 

  51. Matos M, Suárez MA, Gutiérrez G et al (2013) Emulsification with microfiltration ceramic membranes: a different approach to droplet formation mechanism. J Memb Sci 444:345–358. https://doi.org/10.1016/j.memsci.2013.05.033

    Article  CAS  Google Scholar 

  52. Piacentini E, Imbrogno A, Drioli E, Giorno L (2014) Membranes with tailored wettability properties for the generation of uniform emulsion droplets with high efficiency. J Memb Sci 459:96–103. https://doi.org/10.1016/j.memsci.2014.01.075

    Article  CAS  Google Scholar 

  53. Lee KP, Mattia D (2013) Manufacturing of nanoemulsions using nanoporous anodized alumina membranes: experimental investigation and process modeling. Ind Eng Chem Res 52:14866–14874. https://doi.org/10.1021/ie401960n

    Article  CAS  Google Scholar 

  54. Peng Lee K, Mattia D (2013) Monolithic nanoporous alumina membranes for ultrafiltration applications: characterization, selectivity–permeability analysis and fouling studies. J Memb Sci 435:52–61. https://doi.org/10.1016/J.MEMSCI.2013.01.051

    Article  Google Scholar 

  55. Medina-Llamas M, Mattia D (2017) Production of nanoemulsions using anodic alumina membranes in a stirred-cell setup. Ind Eng Chem Res 56:7541–7550. https://doi.org/10.1021/acs.iecr.7b01013

    Article  CAS  Google Scholar 

  56. Fuchigami T, Toki M, Nakanishi K (2000) Membrane emulsification using sol-gel derived macroporous silica glass. J Solgel Sci Technol 19:337–341. https://doi.org/10.1023/A:1008706320776

  57. Comite A (2017) Preparation of silica membranes by sol-gel method. In: Current trends and future developments on (bio-) membranes. Elsevier, pp 3–23

  58. Silva PS, Morelli S, Dragosavac MM et al (2017) Water in oil emulsions from hydrophobized metal membranes and characterization of dynamic interfacial tension in membrane emulsification. Colloids Surf A Physicochem Eng Asp 532:77–86. https://doi.org/10.1016/j.colsurfa.2017.06.051

    Article  CAS  Google Scholar 

  59. Liu XD, Bao DC, Xue WM et al (2002) Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation. J Appl Polym Sci 87:848–852. https://doi.org/10.1002/app.11537

    Article  CAS  Google Scholar 

  60. Nazir A, Schroën K, Boom R (2013) The effect of pore geometry on premix membrane emulsification using nickel sieves having uniform pores. Chem Eng Sci 93:173–180. https://doi.org/10.1016/j.ces.2013.01.029

    Article  CAS  Google Scholar 

  61. Nazir A, Schroën K, Boom R (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J Memb Sci 383:116–123. https://doi.org/10.1016/j.memsci.2011.08.051

    Article  CAS  Google Scholar 

  62. Dowding PJ, Goodwin JW, Vincent B (2001) Production of porous suspension polymer beads with a narrow size distribution using a cross-flow membrane and a continuous tubular reactor. Colloids Surf A Physicochem Eng Asp 180:301–309. https://doi.org/10.1016/S0927-7757(00)00777-9

    Article  CAS  Google Scholar 

  63. Vladisavljević GT, Williams RA (2006) Manufacture of large uniform droplets using rotating membrane emulsification. J Colloid Interface Sci 299:396–402. https://doi.org/10.1016/j.jcis.2006.01.061

    Article  CAS  PubMed  Google Scholar 

  64. Yuan Q, Aryanti N, Hou R, Williams RA (2009) Performance of slotted pores in particle manufacture using rotating membrane emulsification. Particuology 7:114–120. https://doi.org/10.1016/J.PARTIC.2009.01.003

    Article  CAS  Google Scholar 

  65. Syed UT, Leonardo I, Lahoz R et al (2020) Microengineered membranes for sustainable production of hydrophobic deep eutectic solvent-based nanoemulsions by membrane emulsification for enhanced antimicrobial activity. ACS Sustain Chem Eng 8:16526–16536. https://doi.org/10.1021/acssuschemeng.0c05612

    Article  CAS  Google Scholar 

  66. Schroën CGPH, Wijers MC, Cohen-Stuart MA et al (1993) Membrane modification to avoid wettability changes due to protein adsorption in an emulsion/membrane bioreactor. J Memb Sci 80:265–274. https://doi.org/10.1016/0376-7388(93)85151-L

    Article  Google Scholar 

  67. Vladisavljević GT, Tesch S, Schubert H (2002) Preparation of water-in-oil emulsions using microporous polypropylene hollow fibers: influence of some operating parameters on droplet size distribution. Chem Eng Process 41:231–238. https://doi.org/10.1016/S0255-2701(01)00138-6

    Article  Google Scholar 

  68. Giorno L, Li N, Drioli E (2003) Preparation of oil-in-water emulsions using polyamide 10 kDa hollow fiber membrane. J Memb Sci 217:173–180. https://doi.org/10.1016/S0376-7388(03)00126-1

    Article  CAS  Google Scholar 

  69. Suzuki K, Hayakawa K, Hagura Y (1999) Preparation of high concentration O/W and W/O emulsions by the membrane phase inversion emulsification using PTFE membranes. Food Sci Technol Res 5:234–238. https://doi.org/10.3136/fstr.5.234

    Article  Google Scholar 

  70. Yu H, Zhang Y, Sun X et al (2014) Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes. Chem Eng J 237:322–328. https://doi.org/10.1016/j.cej.2013.09.094

    Article  CAS  Google Scholar 

  71. Sun M, Su Y, Mu C, Jiang Z (2010) Improved antifouling property of PES ultrafiltration membranes using additive of silica−PVP nanocomposite. Ind Eng Chem Res 49:790–796. https://doi.org/10.1021/ie900560e

    Article  CAS  Google Scholar 

  72. Kobayashi I, Yasuno M, Iwamoto S et al (2002) Microscopic observation of emulsion droplet formation from a polycarbonate membrane. Colloids Surf A Physicochem Eng Asp 207:185–196. https://doi.org/10.1016/S0927-7757(02)00093-6

    Article  CAS  Google Scholar 

  73. Lv C, Su Y, Wang Y et al (2007) Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127. J Memb Sci 294:68–74. https://doi.org/10.1016/j.memsci.2007.02.011

    Article  CAS  Google Scholar 

  74. Gijsbertsen-Abrahamse AJ, van der Padt A, Boom RM (2003) Influence of membrane morphology on pore activation in membrane emulsification. J Memb Sci 217:141–150. https://doi.org/10.1016/S0376-7388(03)00104-2

    Article  CAS  Google Scholar 

  75. Kobayashi I, Nakajima M, Chun K et al (2002) Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J 48:1639–1644. https://doi.org/10.1002/aic.690480807

    Article  CAS  Google Scholar 

  76. Kobayashi I, Mukataka S, Nakajima M (2004) Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J Colloid Interface Sci 279:277–280. https://doi.org/10.1016/j.jcis.2004.06.028

    Article  CAS  PubMed  Google Scholar 

  77. Sugiura S, Nakajima M, Tong J et al (2000) Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J Colloid Interface Sci 227:95–103. https://doi.org/10.1006/JCIS.2000.6843

    Article  CAS  PubMed  Google Scholar 

  78. Schröder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J Colloid Interface Sci 202:334–340. https://doi.org/10.1006/jcis.1998.5429

  79. Vladisavljević GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Memb Sci 250:69–77. https://doi.org/10.1016/j.memsci.2004.10.017

    Article  CAS  Google Scholar 

  80. Vladisavljević GT, Kobayashi I, Nakajima M et al (2007) Shirasu Porous Glass membrane emulsification: characterisation of membrane structure by high-resolution X-ray microtomography and microscopic observation of droplet formation in real-time. J Memb Sci 302:243–253. https://doi.org/10.1016/j.memsci.2007.06.067

    Article  CAS  Google Scholar 

  81. Agarwal C, Das S, Pandey AK (2022) Study on pore size distributions of microporous polymer membranes having different physical architecture using capillary flow porometry. Mater Today Chem 23:100652. https://doi.org/10.1016/J.MTCHEM.2021.100652

    Article  CAS  Google Scholar 

  82. Spyropoulos F, Lloyd DM, Hancocks RD, Pawlik AK (2014) Advances in membrane emulsification. Part A: recent developments in processing aspects and microstructural design approaches. J Sci Food Agric 94:613–627. https://doi.org/10.1002/jsfa.6444

    Article  CAS  PubMed  Google Scholar 

  83. Yuan Q, Aryanti N, Gutiérrez G, Williams RA (2009) Enhancing the throughput of membrane emulsification techniques to manufacture functional particles. Ind Eng Chem Res 48:8872–8880. https://doi.org/10.1021/ie801929s

    Article  CAS  Google Scholar 

  84. Cheng J, Huang Q, Huang Y et al (2020) Pore structure design of NFES PTFE membrane for membrane emulsification. J Memb Sci 611:118365. https://doi.org/10.1016/j.memsci.2020.118365

    Article  CAS  Google Scholar 

  85. Kobayashi I, Uemura K, Nakajima M (2007) CFD analysis of the generation of soybean oil-in-water emulsion droplets using rectangular straight-through microchannels. Food Sci Technol Res 13:187–192. https://doi.org/10.3136/fstr.13.187

    Article  Google Scholar 

  86. Abrahamse AJ, van der Padt A, Boom RM, de Heij WBC (2001) Process fundamentals of membrane emulsification: simulation with CFD. AIChE J 47:1285–1291. https://doi.org/10.1002/aic.690470606

    Article  CAS  Google Scholar 

  87. Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Memb Sci 150:1–8. https://doi.org/10.1016/S0376-7388(98)00197-5

    Article  CAS  Google Scholar 

  88. Silva PS, Starov VM, Holdich RG (2017) Membrane emulsification: formation of water in oil emulsions using a hydrophilic membrane. Colloids Surf A Physicochem Eng Asp 532:297–304. https://doi.org/10.1016/j.colsurfa.2017.04.077

    Article  CAS  Google Scholar 

  89. Rapp BE (2017) Microfluidics: modelling, mechanics and mathematics. Elsevier

    Google Scholar 

  90. Vladisavljević GT (2018) Fabrication of Nanoemulsions by Membrane Emulsification. In: Nanoemulsions. Elsevier 287–346

  91. Wang Y, Jiang Q, Jing W et al (2022) Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification. J Memb Sci 648:120347. https://doi.org/10.1016/j.memsci.2022.120347

    Article  CAS  Google Scholar 

  92. Kawakatsu T, Trägårdh G, Trägårdh C et al (2001) The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids Surf A Physicochem Eng Asp 179:29–37. https://doi.org/10.1016/S0927-7757(00)00498-2

    Article  CAS  Google Scholar 

  93. Gijsbertsen-Abrahamse A (2003) Membrane emulsification: process principles. Wageningen University

  94. Kang G-S, Baek Y, Yoo J-B (2020) Relationship between surface hydrophobicity and flux for membrane separation. RSC Adv 10:40043–40046. https://doi.org/10.1039/D0RA07262A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahn CH, Baek Y, Lee C et al (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18:1551–1559. https://doi.org/10.1016/j.jiec.2012.04.005

    Article  CAS  Google Scholar 

  96. Jing W, Wu J, Jin W et al (2006) Monodispersed W/O emulsion prepared by hydrophilic ceramic membrane emulsification. Desalination 191:219–222. https://doi.org/10.1016/j.desal.2005.07.024

    Article  CAS  Google Scholar 

  97. Kukizaki M, Goto M (2007) Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification. J Memb Sci 299:190–199. https://doi.org/10.1016/j.memsci.2007.04.040

    Article  CAS  Google Scholar 

  98. Kukizaki M (2009) Microbubble formation using asymmetric Shirasu porous glass (SPG) membranes and porous ceramic membranes—a comparative study. Colloids Surf A Physicochem Eng Asp 340:20–32. https://doi.org/10.1016/j.colsurfa.2009.02.033

    Article  CAS  Google Scholar 

  99. Jung JT, Kim JF, Wang HH et al (2016) Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Memb Sci 514:250–263. https://doi.org/10.1016/j.memsci.2016.04.069

    Article  CAS  Google Scholar 

  100. Hnatchuk N, Pawale T, Li X (2022) Asymmetric polymer materials: synthesis, structure, and performance. Polymer (Guildf) 242:124607. https://doi.org/10.1016/J.POLYMER.2022.124607

    Article  CAS  Google Scholar 

  101. van Rijn CJM, Elwenspoek MC (1995) Microfiltration membrane sieve with silicon micromachining for industrial and biomedical applications. In: Proceedings IEEE micro electro mechanical systems. 1995. IEEE, p 83

  102. Charcosset C, Fessi H (2005) Membrane emulsification and microchannel emulsification processes. Rev Chem Eng 21:1–32. https://doi.org/10.1515/REVCE.2005.21.1.1

    Article  CAS  Google Scholar 

  103. Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566. https://doi.org/10.1021/la010342y

    Article  CAS  Google Scholar 

  104. Kukizaki M, Goto M (2007) Spontaneous formation behavior of uniform-sized microbubbles from Shirasu porous glass (SPG) membranes in the absence of water-phase flow. Colloids Surf A Physicochem Eng Asp 296:174–181. https://doi.org/10.1016/j.colsurfa.2006.09.042

    Article  CAS  Google Scholar 

  105. Kukizaki M (2009) Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure. J Memb Sci 327:234–243. https://doi.org/10.1016/j.memsci.2008.11.026

    Article  CAS  Google Scholar 

  106. Zhi W, Shichang W, Volker S, Helmar S (2000) Effect of continuous phase viscosity on membrane emulsification. Chin J Chem Eng 8:108–112

    Google Scholar 

  107. Mugabi J, Igura N, Shimoda M (2018) Effect of process parameters on oil-in-water emulsion droplet size and distribution in swirl flow membrane emulsification. J Chem Eng Jpn 51:229–236. https://doi.org/10.1252/jcej.17we204

    Article  CAS  Google Scholar 

  108. Shimoda M, Miyamae H, Nishiyama K et al (2011) Swirl-flow membrane emulsification for high throughput of dispersed phase flux through Shirasu porous glass (SPG) membrane. J Chem Eng Jpn 44:1–6. https://doi.org/10.1252/jcej.10we156

    Article  CAS  Google Scholar 

  109. Holdich RG, Dragosavac MM, Vladisavljević GT, Piacentini E (2013) Continuous membrane emulsification with pulsed (oscillatory) flow. Ind Eng Chem Res 52:507–515. https://doi.org/10.1021/ie3020457

    Article  CAS  Google Scholar 

  110. Charcosset C (2009) Preparation of emulsions and particles by membrane emulsification for the food processing industry. J Food Eng 92:241–249. https://doi.org/10.1016/j.jfoodeng.2008.11.017

    Article  CAS  Google Scholar 

  111. Pawlik AK, Norton IT (2013) SPG rotating membrane technique for production of food grade emulsions. J Food Eng 114:530–537. https://doi.org/10.1016/j.jfoodeng.2012.09.008

    Article  CAS  Google Scholar 

  112. Yuan Q, Williams RA, Aryanti N (2010) Innovations in high throughput manufacturing of uniform emulsions and capsules. Adv Powder Technol 21:599–608. https://doi.org/10.1016/j.apt.2010.08.001

  113. Zhu J, Barrow D (2005) Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. J Memb Sci 261:136–144. https://doi.org/10.1016/j.memsci.2005.02.038

    Article  CAS  Google Scholar 

  114. Holdich RG, Dragosavac MM, Vladisavljević GT, Kosvintsev SR (2010) Membrane emulsification with oscillating and stationary membranes. Ind Eng Chem Res 49:3810–3817. https://doi.org/10.1021/ie900531n

    Article  CAS  Google Scholar 

  115. Piacentini E, Drioli E, Giorno L (2014) Pulsed back-and-forward cross-flow batch membrane emulsification with high productivity to obtain highly uniform and concentrated emulsions. J Memb Sci 453:119–125. https://doi.org/10.1016/j.memsci.2013.10.063

    Article  CAS  Google Scholar 

  116. Kukizaki M, Goto M (2006) Effects of interfacial tension and viscosities of oil and water phases on monodispersed droplet formation using a Shirasu-porous-glass SPG membrane. Membrane 31:215–220

    Article  CAS  Google Scholar 

  117. Egidi E, Gasparini G, Holdich RG et al (2008) Membrane emulsification using membranes of regular pore spacing: droplet size and uniformity in the presence of surface shear. J Memb Sci 323:414–420. https://doi.org/10.1016/j.memsci.2008.06.047

    Article  CAS  Google Scholar 

  118. Suárez MA, Gutiérrez G, Coca J, Pazos C (2013) Geometric parameters influencing the production of O/W emulsions using flat metallic membranes and scale-up. J Memb Sci 430:140–149. https://doi.org/10.1016/j.memsci.2012.12.013

    Article  CAS  Google Scholar 

  119. Li T, Zhou Y, Wang JX et al (2013) High-throughput emulsification in a microporous tube-in-tube microchannel device: O/W emulsion formation. Chem Eng J 228:155–161. https://doi.org/10.1016/j.cej.2013.04.055

    Article  CAS  Google Scholar 

  120. Gaspar I, Tekic P, Koris A et al (2015) CFD and laboratory analysis of axial cross-flow velocity in a porous tube packed with differently structured static turbulence promoters. Hem Ind 69:713–718. https://doi.org/10.2298/HEMIND140312001G

    Article  Google Scholar 

  121. Koris A, Piacentini E, Vatai G et al (2011) Investigation on the effects of a mechanical shear-stress modification method during cross-flow membrane emulsification. J Memb Sci 371:28–36. https://doi.org/10.1016/j.memsci.2011.01.005

    Article  CAS  Google Scholar 

  122. Perazzo A, Preziosi V, Guido S (2015) Phase inversion emulsification: Current understanding and applications. Adv Colloid Interface Sci 222:581–599. https://doi.org/10.1016/J.CIS.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  123. Van Der Graaf S, Schroën CGPH, Van Der Sman RGM, Boom RM (2004) Influence of dynamic interfacial tension on droplet formation during membrane emulsification. J Colloid Interface Sci 277:456–463. https://doi.org/10.1016/j.jcis.2004.04.033

    Article  CAS  PubMed  Google Scholar 

  124. Rayner M, Trägårdh G, Trägårdh C (2005) The impact of mass transfer and interfacial expansion rate on droplet size in membrane emulsification processes. Colloids Surf A Physicochem Eng Asp 266:1–17. https://doi.org/10.1016/j.colsurfa.2005.05.025

    Article  CAS  Google Scholar 

  125. Lloyd DM, Norton IT, Spyropoulos F (2015) Process optimization of rotating membrane emulsification through the study of surfactant dispersions. J Food Eng 166:316–324. https://doi.org/10.1016/j.jfoodeng.2015.06.028

    Article  CAS  Google Scholar 

  126. Nakashima T, Shimizu M, Kukizaki M (1992) Membrane emulsification by microporous glass. Key Eng Mater 61–62:513–516. https://doi.org/10.4028/www.scientific.net/KEM.61-62.513

    Article  Google Scholar 

  127. Piacentini E, Drioli E, Molinari R, Giorno L (2009) Membrane Emulsification to develop biohybrid microstructured and multifunctional systems Settore Scientifico Disciplinare CHIM07-Fondamenti chimici delle tecnologie. Doctoral dissertation

  128. Shu-Sen W (1988) Effect of solution viscosity on ultrafiltration flux. J Memb Sci 39:187–194. https://doi.org/10.1016/S0376-7388(00)80988-6

    Article  Google Scholar 

  129. Kukizaki M, Goto M (2008) Demulsification of water-in-oil emulsions by permeation through Shirasu-porous-glass (SPG) membranes. J Memb Sci 322:196–203. https://doi.org/10.1016/j.memsci.2008.05.029

    Article  CAS  Google Scholar 

  130. Nady N, Schroën K, Franssen MCR et al (2012) Enzyme-catalyzed modification of PES surfaces: reduction in adsorption of BSA, dextrin, and tannin. J Colloid Interface Sci 378:191–200. https://doi.org/10.1016/j.jcis.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  131. Tripathi BP, Das P, Simon F, Stamm M (2018) Ultralow fouling membranes by surface modification with functional polydopamine. Eur Polym J 99:80–89. https://doi.org/10.1016/j.eurpolymj.2017.12.006

    Article  CAS  Google Scholar 

  132. Liu C, Xiao TM, Zhang J et al (2014) Effect of membrane wettability on membrane fouling and chemical durability of SPG membranes used in a microbubble-aerated biofilm reactor. Sep Purif Technol 127:157–164. https://doi.org/10.1016/J.SEPPUR.2014.03.001

    Article  CAS  Google Scholar 

  133. Wang F, Zhu H, Zhang H et al (2015) Effect of surface hydrophilic modification on the wettability, surface charge property, and separation performance of PTFE membrane. Journal of Water Process Engineering 8:11–18. https://doi.org/10.1016/j.jwpe.2015.08.004

    Article  Google Scholar 

  134. Nazir A, Schroën K, Boom R (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J Memb Sci 383:116–123. https://doi.org/10.1016/j.memsci.2011.08.051

  135. Sahin S, Sawalha H, Schroën K (2014) High throughput production of double emulsions using packed bed premix emulsification. Food Res Int 66:78–85. https://doi.org/10.1016/j.foodres.2014.08.025

Download references

Funding

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government (MOTIE) (RS-2023–00243201, Global Talent Development project for Advanced SMR Core Computational Analysis Technology Development).

Author information

Authors and Affiliations

Authors

Contributions

Jophous Mugabi: conceptualization, literature search, validation, data analysis, original draft preparation, review, and editing. Jae-Ho Jeong: resources, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Jae-Ho Jeong.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugabi, J., Jeong, JH. Review of the technological advances for the preparation of colloidal dispersions at high production throughput using microporous membrane systems. Colloid Polym Sci 302, 463–485 (2024). https://doi.org/10.1007/s00396-023-05217-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05217-8

Keywords

Navigation