Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 1, 2024

Escape from X-chromosome inactivation and sex differences in Alzheimer’s disease

  • Qing-Hua Song , Ke-Xuan Zhao , Shuai Huang , Tong Chen and Ling He EMAIL logo

Abstract

Sex differences exist in the onset and progression of Alzheimer’s disease. Globally, women have a higher prevalence, while men with Alzheimer’s disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer’s disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer’s disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer’s disease. Also, we discuss their possible role in driving the sex differences in Alzheimer’s disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.


Corresponding author: Ling He, Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, Jiangsu Province, China, E-mail:

Award Identifier / Grant number: 2022M713476

Award Identifier / Grant number: No. 81673434

Award Identifier / Grant number: No. 82003968

Funding source: “Double First Class” University project

Award Identifier / Grant number: CPU2018GY22

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

Funding source: China Postdoctoral Science Foundation

Award Identifier / Grant number: Unassigned

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 82003968, No. 81673434), “Double First Class” University project (CPU2018GY22) and China Postdoctoral Science Foundation, 2022M713476. Figure 1 was made with BioRender.com.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was funded by the National Natural Science Foundation of China (No. 82003968, No. 81673434), “Double First Class” University project (CPU2018GY22) and China Postdoctoral Science Foundation, 2022M713476.

  5. Data availability: Not applicable.

References

Agostini, A., Yuchun, D., Li, B., Kendall, D.A., and Pardon, M.C. (2020). Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the appswe/ps1de9 mouse model of Alzheimer’s disease. Brain Behav. Immun. 83: 87–111, https://doi.org/10.1016/j.bbi.2019.09.019.Search in Google Scholar PubMed PubMed Central

Aksnes, M., Capogna, E., Vidal-Piñeiro, D., Chaudhry, F.A., Myrstad, M., Idland, A.V., Halaas, N.B., Dakhil, S., Blennow, K., Zetterberg, H., et al.. (2023). Matrix metalloproteinases are associated with brain atrophy in cognitively unimpaired individuals. Neurobiol. Aging 131: 11–23, https://doi.org/10.1016/j.neurobiolaging.2023.05.012.Search in Google Scholar PubMed

Al-Hakim, A.K., Zagorska, A., Chapman, L., Deak, M., Peggie, M., and Alessi, D.R. (2008). Control of ampk-related kinases by usp9x and atypical lys(29)/lys(33)-linked polyubiquitin chains. Biochem. J. 411: 249–260, https://doi.org/10.1042/bj20080067.Search in Google Scholar

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J.R., and DeFelipe, J. (2008). Gender differences in human cortical synaptic density. Proc. Natl. Acad. Sci. U.S.A. 105: 14615–14619, https://doi.org/10.1073/pnas.0803652105.Search in Google Scholar PubMed PubMed Central

Altmann, A., Tian, L., Henderson, V.W., and Greicius, M.D. (2014). Sex modifies the apoe-related risk of developing alzheimer disease. Ann. Neurol. 75: 563–573, https://doi.org/10.1002/ana.24135.Search in Google Scholar PubMed PubMed Central

Alzheimer’s, A. (2016). 2016 alzheimer’s disease facts and figures. Alzheimers Dement 12: 459–509, https://doi.org/10.1016/j.jalz.2016.03.001.Search in Google Scholar PubMed

Alzheimer’s, A. (2021). 2021 alzheimer’s disease facts and figures. Alzheimers Dement 17: 327–406.10.1002/alz.12328Search in Google Scholar PubMed

Angeloni, A. and Bogdanovic, O. (2019). Enhancer DNA methylation: implications for gene regulation. Essays Biochem. 63: 707–715, https://doi.org/10.1042/ebc20190030.Search in Google Scholar

Bajic, V., Mandusic, V., Stefanova, E., Bozovic, A., Davidovic, R., Zivkovic, L., Cabarkapa, A., and Spremo-Potparevic, B. (2015). Skewed x-chromosome inactivation in women affected by alzheimer’s disease. J. Alzheimers Dis. 43: 1251–1259, https://doi.org/10.3233/jad-141674.Search in Google Scholar PubMed

Bajic, V.P., Essack, M., Zivkovic, L., Stewart, A., Zafirovic, S., Bajic, V.B., Gojobori, T., Isenovic, E., and Spremo-Potparevic, B. (2019). The x files: “The mystery of x chromosome instability in alzheimer’s disease”. Front. Genet. 10: 1368, https://doi.org/10.3389/fgene.2019.01368.Search in Google Scholar PubMed PubMed Central

Bellott, D.W., Hughes, J.F., Skaletsky, H., Brown, L.G., Pyntikova, T., Cho, T.J., Koutseva, N., Zaghlul, S., Graves, T., Rock, S., et al.. (2014). Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508: 494–499, https://doi.org/10.1038/nature13206.Search in Google Scholar PubMed PubMed Central

Belloy, M.E., Napolioni, V., and Greicius, M.D. (2019). A quarter century of apoe and alzheimer’s disease: progress to date and the path forward. Neuron 101: 820–838, https://doi.org/10.1016/j.neuron.2019.01.056.Search in Google Scholar PubMed PubMed Central

Berletch, J.B., Ma, W., Yang, F., Shendure, J., Noble, W.S., Disteche, C.M., and Deng, X. (2015). Escape from X inactivation varies in mouse tissues. PLoS Genet. 11: e1005079, https://doi.org/10.1371/journal.pgen.1005079.Search in Google Scholar PubMed PubMed Central

Berletch, J.B., Yang, F., and Disteche, C.M. (2010). Escape from X inactivation in mice and humans. Genome Biol. 11: 213, https://doi.org/10.1186/gb-2010-11-6-213.Search in Google Scholar PubMed PubMed Central

Brockdorff, N., Bowness, J.S., and Wei, G. (2020). Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 34: 733–744, https://doi.org/10.1101/gad.337196.120.Search in Google Scholar PubMed PubMed Central

Buckley, R.F., Mormino, E.C., Rabin, J.S., Hohman, T.J., Landau, S., Hanseeuw, B.J., Jacobs, H.I.L., Papp, K.V., Amariglio, R.E., Properzi, M.J., et al.. (2019). Sex differences in the association of global amyloid and regional tau deposition measured by positron emission tomography in clinically normal older adults. JAMA Neurol. 76: 542–551, https://doi.org/10.1001/jamaneurol.2018.4693.Search in Google Scholar PubMed PubMed Central

Buono, M.F., Benavente, E.D., Daniels, M., Mol, B.M., Mekke, J.M., de Borst, G.J., de Kleijn, D.P.V., van der Laan, S.W., Pasterkamp, G., Onland-Moret, C., et al.. (2023). X chromosome inactivation skewing is common in advanced carotid atherosclerotic lesions in females and predicts secondary peripheral artery events. Biol. Sex Differ. 14: 43, https://doi.org/10.1186/s13293-023-00527-6.Search in Google Scholar PubMed PubMed Central

Burkhart, R.A., Peng, Y., Norris, Z.A., Tholey, R.M., Talbott, V.A., Liang, Q., Ai, Y., Miller, K., Lal, S., Cozzitorto, J.A., et al.. (2013). Mitoxantrone targets human ubiquitin-specific peptidase 11 (usp11) and is a potent inhibitor of pancreatic cancer cell survival. Mol. Cancer Res. 11: 901–911, https://doi.org/10.1158/1541-7786.mcr-12-0699.Search in Google Scholar

Carrasquillo, M.M., Zou, F., Pankratz, V.S., Wilcox, S.L., Ma, L., Walker, L.P., Younkin, S.G., Younkin, C.S., Younkin, L.H., Bisceglio, G.D., et al.. (2009). Genetic variation in pcdh11x is associated with susceptibility to late-onset Alzheimer’s disease. Nat. Genet. 41: 192–198, https://doi.org/10.1038/ng.305.Search in Google Scholar PubMed PubMed Central

Carrel, L. and Brown, C.J. (2017). When the lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 372, https://doi.org/10.1098/rstb.2016.0355.Search in Google Scholar PubMed PubMed Central

Carrel, L. and Willard, H.F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400–404, https://doi.org/10.1038/nature03479.Search in Google Scholar PubMed

Casaletto, K.B., Elahi, F.M., Staffaroni, A.M., Walters, S., Contreras, W.R., Wolf, A., Dubal, D., Miller, B., Yaffe, K., and Kramer, J.H. (2019). Cognitive aging is not created equally: differentiating unique cognitive phenotypes in “normal” adults. Neurobiol. Aging 77: 13–19, https://doi.org/10.1016/j.neurobiolaging.2019.01.007.Search in Google Scholar PubMed PubMed Central

Castellani, R.J., Nunomura, A., Lee, H.G., Perry, G., and Smith, M.A. (2008). Phosphorylated tau: toxic, protective, or none of the above. J. Alzheimers Dis. 14: 377–383, https://doi.org/10.3233/jad-2008-14404.Search in Google Scholar PubMed PubMed Central

Castro Fonseca, M., Oliveira, J.F., Araujo, B.H.S., Canateli, C., Prado, P.F.V., Amorim Neto, D.P., Bosque, B.P., Rodrigues, P.V., Godoy, J.V.P., Tostes, K., et al.. (2021). Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in ddx3x. iScience 24: 102841, https://doi.org/10.1016/j.isci.2021.102841.Search in Google Scholar PubMed PubMed Central

Cerhan, J.R., Folsom, A.R., Mortimer, J.A., Shahar, E., Knopman, D.S., McGovern, P.G., Hays, M.A., Crum, L.D., and Heiss, G. (1998). Correlates of cognitive function in middle-aged adults. Atherosclerosis risk in communities (aric) study investigators. Gerontology 44: 95–105, https://doi.org/10.1159/000021991.Search in Google Scholar PubMed

Chahrour, M., Jung, S.Y., Shaw, C., Zhou, X., Wong, S.T., Qin, J., and Zoghbi, H.Y. (2008). Mecp2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224–1229, https://doi.org/10.1126/science.1153252.Search in Google Scholar PubMed PubMed Central

Choi, J., Kwon, H., and Han, P.L. (2021). Hyperoxygenation treatment reduces beta-amyloid deposition via mecp2-dependent upregulation of mmp-2 and mmp-9 in the hippocampus of tg-app/ps1 mice. Exp. Neurobiol. 30: 294–307, https://doi.org/10.5607/en21014.Search in Google Scholar PubMed PubMed Central

Choi, J., Kwon, H.J., Lee, J.E., Lee, Y., Seoh, J.Y., and Han, P.L. (2019). Hyperoxygenation revitalizes Alzheimer’s disease pathology through the upregulation of neurotrophic factors. Aging Cell 18: e12888, https://doi.org/10.1111/acel.12888.Search in Google Scholar PubMed PubMed Central

Cole, C.J., Mercaldo, V., Restivo, L., Yiu, A.P., Sekeres, M.J., Han, J.H., Vetere, G., Pekar, T., Ross, P.J., Neve, R.L., et al.. (2012). Mef2 negatively regulates learning-induced structural plasticity and memory formation. Nat. Neurosci. 15: 1255–1264, https://doi.org/10.1038/nn.3189.Search in Google Scholar PubMed

Cotton, A.M., Ge, B., Light, N., Adoue, V., Pastinen, T., and Brown, C.J. (2013). Analysis of expressed snps identifies variable extents of expression from the human inactive X chromosome. Genome Biol. 14: R122, https://doi.org/10.1186/gb-2013-14-11-r122.Search in Google Scholar PubMed PubMed Central

da Rocha, S.T. and Gendrel, A.V. (2019). The influence of DNA methylation on monoallelic expression. Essays Biochem. 63: 663–676, https://doi.org/10.1042/ebc20190034.Search in Google Scholar PubMed PubMed Central

Davis, E.J., Broestl, L., Abdulai-Saiku, S., Worden, K., Bonham, L.W., Miñones-Moyano, E., Moreno, A.J., Wang, D., Chang, K., Williams, G., et al. (2020). A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 12: 75–90, https://doi.org/10.1126/scitranslmed.aaz5677.Search in Google Scholar PubMed PubMed Central

Davis, E.J., Solsberg, C.W., White, C.C., Miñones-Moyano, E., Sirota, M., Chibnik, L., Bennett, D.A., De Jager, P.L., Yokoyama, J.S., and Dubal, D.B. (2021). Sex-specific association of the X chromosome with cognitive change and tau pathology in aging and Alzheimer disease. JAMA Neurol. 78: 1249–1254, https://doi.org/10.1001/jamaneurol.2021.2806.Search in Google Scholar PubMed PubMed Central

De Strooper, B., Vassar, R., and Golde, T. (2010). The secretases: enzymes with therapeutic potential in alzheimer disease. Nat. Rev. Neurol. 6: 99–107, https://doi.org/10.1038/nrneurol.2009.218.Search in Google Scholar PubMed PubMed Central

Disteche, C.M. and Berletch, J.B. (2015). X-chromosome inactivation and escape. J. Genet. 94: 591–599, https://doi.org/10.1007/s12041-015-0574-1.Search in Google Scholar PubMed PubMed Central

Do, H.A. and Baek, K.H. (2021). Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases. Ageing Res. Rev. 69: 101367, https://doi.org/10.1016/j.arr.2021.101367.Search in Google Scholar PubMed

Dubal, D.B., Broestl, L., and Worden, K. (2012). Sex and gonadal hormones in mouse models of alzheimer’s disease: what is relevant to the human condition? Biol. Sex Differ. 3: 24, https://doi.org/10.1186/2042-6410-3-24.Search in Google Scholar PubMed PubMed Central

Durand, C.M., Kappeler, C., Betancur, C., Delorme, R., Quach, H., Goubran-Botros, H., Melke, J., Nygren, G., Chabane, N., Bellivier, F., et al.. (2006). Expression and genetic variability of pcdh11y, a gene specific to homo sapiens and candidate for susceptibility to psychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141b: 67–70, https://doi.org/10.1002/ajmg.b.30229.Search in Google Scholar PubMed PubMed Central

Dwane, L., O’Connor, A.E., Das, S., Moran, B., Mulrane, L., Pinto-Fernandez, A., Ward, E., Blümel, A.M., Cavanagh, B.L., Mooney, B., et al.. (2020). A functional genomic screen identifies the deubiquitinase Usp11 as a novel transcriptional regulator of erα in breast cancer. Cancer Res. 80: 5076–5088, https://doi.org/10.1158/0008-5472.can-20-0214.Search in Google Scholar

Engreitz, J.M., Pandya-Jones, A., McDonel, P., Shishkin, A., Sirokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E.S., et al.. (2013). The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973, https://doi.org/10.1126/science.1237973.Search in Google Scholar PubMed PubMed Central

Fang, H., Disteche, C.M., and Berletch, J.B. (2019). X inactivation and escape: epigenetic and structural features. Front. Cell Dev. Biol. 7: 219, https://doi.org/10.3389/fcell.2019.00219.Search in Google Scholar PubMed PubMed Central

Fang, Y., Zhao, T., Ni, H., Li, Y., Zhu, Y., Gao, R., Zhang, L., Jia, Z., and Chen, G. (2023). Usp11 exacerbates neuronal apoptosis after traumatic brain injury via pkm2-mediated pi3k/akt signaling pathway. Brain Res. 1807: 148321, https://doi.org/10.1016/j.brainres.2023.148321.Search in Google Scholar PubMed

Ferrari, C. and Sorbi, S. (2021). The complexity of alzheimer’s disease: an evolving puzzle. Physiol. Rev. 101: 1047–1081, https://doi.org/10.1152/physrev.00015.2020.Search in Google Scholar PubMed

Furlan, G. and Galupa, R. (2022). Mechanisms of choice in X-chromosome inactivation. Cells 11: 1020–1039, https://doi.org/10.3390/cells11030535.Search in Google Scholar PubMed PubMed Central

Galupa, R. and Heard, E. (2018). X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet. 52: 535–566, https://doi.org/10.1146/annurev-genet-120116-024611.Search in Google Scholar PubMed

Gentilini, D., Castaldi, D., Mari, D., Monti, D., Franceschi, C., Di Blasio, A.M., and Vitale, G. (2012). Age-dependent skewing of x chromosome inactivation appears delayed in centenarians’ offspring. Is there a role for allelic imbalance in healthy aging and longevity? Aging Cell 11: 277–283, https://doi.org/10.1111/j.1474-9726.2012.00790.x.Search in Google Scholar PubMed

Greenfield, A., Carrel, L., Pennisi, D., Philippe, C., Quaderi, N., Siggers, P., Steiner, K., Tam, P.P., Monaco, A.P., Willard, H.F., et al.. (1998). The utx gene escapes X inactivation in mice and humans. Hum. Mol. Genet. 7: 737–742, https://doi.org/10.1093/hmg/7.4.737.Search in Google Scholar PubMed

Gu, G.J., Wu, D., Lund, H., Sunnemark, D., Kvist, A.J., Milner, R., Eckersley, S., Nilsson, L.N., Agerman, K., Landegren, U., et al.. (2013). Elevated mark2-dependent phosphorylation of tau in Alzheimer’s disease. J. Alzheimers Dis. 33: 699–713, https://doi.org/10.3233/jad-2012-121357.Search in Google Scholar

Guo, C., Chang, C.C., Wortham, M., Chen, L.H., Kernagis, D.N., Qin, X., Cho, Y.W., Chi, J.T., Grant, G.A., McLendon, R.E., et al.. (2012). Global identification of mll2-targeted loci reveals mll2’s role in diverse signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 109: 17603–17608, https://doi.org/10.1073/pnas.1208807109.Search in Google Scholar PubMed PubMed Central

Hajdarovic, K.H., Yu, D., Hassell, L.A., Evans, S., Packer, S., Neretti, N., and Webb, A.E. (2022). Single-cell analysis of the aging female mouse hypothalamus. Nat. Aging 2: 662–678, https://doi.org/10.1038/s43587-022-00246-4.Search in Google Scholar PubMed PubMed Central

Han, K., Gennarino, V.A., Lee, Y., Pang, K., Hashimoto-Torii, K., Choufani, S., Raju, C.S., Oldham, M.C., Weksberg, R., Rakic, P., et al.. (2013). Human-specific regulation of mecp2 levels in fetal brains by microrna mir-483-5p. Genes Dev. 27: 485–490, https://doi.org/10.1101/gad.207456.112.Search in Google Scholar PubMed PubMed Central

Harrigan, J.A., Jacq, X., Martin, N.M., and Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discovery 17: 57–78, https://doi.org/10.1038/nrd.2017.152.Search in Google Scholar PubMed PubMed Central

Hohman, T.J., Dumitrescu, L., Barnes, L.L., Thambisetty, M., Beecham, G., Kunkle, B., Gifford, K.A., Bush, W.S., Chibnik, L.B., Mukherjee, S., et al.. (2018). Sex-specific association of apolipoprotein e with cerebrospinal fluid levels of tau. JAMA Neurol. 75: 989–998, https://doi.org/10.1001/jamaneurol.2018.0821.Search in Google Scholar PubMed PubMed Central

Hong, S., Cho, Y.W., Yu, L.R., Yu, H., Veenstra, T.D., and Ge, K. (2007). Identification of jmjc domain-containing Ut and jmjd3 as histone H3 lysine 27 demethylases. Proc. Natl. Acad. Sci. U. S. A. 104: 18439–18444, https://doi.org/10.1073/pnas.0707292104.Search in Google Scholar PubMed PubMed Central

Ibrahim, A., Papin, C., Mohideen-Abdul, K., Le Gras, S., Stoll, I., Bronner, C., Dimitrov, S., Klaholz, B.P., and Hamiche, A. (2021). Mecp2 is a microsatellite binding protein that protects ca repeats from nucleosome invasion. Science 372: 1486–1499, https://doi.org/10.1126/science.abd5581.Search in Google Scholar PubMed

Iurlaro, M., von Meyenn, F., and Reik, W. (2017). DNA methylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev. 43: 101–109, https://doi.org/10.1016/j.gde.2017.02.003.Search in Google Scholar PubMed

Jack, C.R.Jr., Wiste, H.J., Weigand, S.D., Knopman, D.S., Vemuri, P., Mielke, M.M., Lowe, V., Senjem, M.L., Gunter, J.L., Machulda, M.M., et al.. (2015). Age, sex, and apoe ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol. 72: 511–519, https://doi.org/10.1001/jamaneurol.2014.4821.Search in Google Scholar PubMed PubMed Central

Jack, C.R.Jr., Wiste, H.J., Weigand, S.D., Therneau, T.M., Knopman, D.S., Lowe, V., Vemuri, P., Mielke, M.M., Roberts, R.O., Machulda, M.M., et al.. (2017). Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study. Lancet Neurol. 16: 435–444, https://doi.org/10.1016/s1474-4422(17)30077-7.Search in Google Scholar PubMed PubMed Central

Jiao, B., Liu, X., Zhou, L., Wang, M.H., Zhou, Y., Xiao, T., Zhang, W., Sun, R., Waye, M.M., Tang, B., et al.. (2015). Polygenic analysis of late-onset alzheimer’s disease from mainland China. PLoS One 10: e0144898, https://doi.org/10.1371/journal.pone.0144898.Search in Google Scholar PubMed PubMed Central

Jung, M. and Pfeifer, G.P. (2015). Aging and DNA methylation. BMC Biol. 13: 7, https://doi.org/10.1186/s12915-015-0118-4.Search in Google Scholar PubMed PubMed Central

Kang, S.S., Meng, L., Zhang, X., Wu, Z., Mancieri, A., Xie, B., Liu, X., Weinshenker, D., Peng, J., Zhang, Z., et al.. (2022). Tau modification by the norepinephrine metabolite dopegal stimulates its pathology and propagation. Nat. Struct. Mol. Biol. 29: 292–305, https://doi.org/10.1038/s41594-022-00745-3.Search in Google Scholar PubMed PubMed Central

Kapuria, V., Peterson, L.F., Fang, D., Bornmann, W.G., Talpaz, M., and Donato, N.J. (2010). Deubiquitinase inhibition by small-molecule wp1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70: 9265–9276, https://doi.org/10.1158/0008-5472.can-10-1530.Search in Google Scholar

Kawakami, F., Suzuki, M., Shimada, N., Kagiya, G., Ohta, E., Tamura, K., Maruyama, H., and Ichikawa, T. (2011). Stimulatory effect of α-synuclein on the tau-phosphorylation by gsk-3β. FEBS J. 278: 4895–4904, https://doi.org/10.1111/j.1742-4658.2011.08389.x.Search in Google Scholar PubMed

Kim, B., Choi, Y., Kim, H.S., and Im, H.I. (2019). Methyl-cpg binding protein 2 in Alzheimer dementia. Int. Neurourol. J. 23: S72–S81, https://doi.org/10.5213/inj.1938196.098.Search in Google Scholar PubMed PubMed Central

Kim, M., Suh, J., Romano, D., Truong, M.H., Mullin, K., Hooli, B., Norton, D., Tesco, G., Elliott, K., Wagner, S.L., et al.. (2009). Potential late-onset Alzheimer’s disease-associated mutations in the Adam10 gene attenuate α-secretase activity. Hum. Mol. Genet. 18: 3987–3996, https://doi.org/10.1093/hmg/ddp323.Search in Google Scholar PubMed PubMed Central

Knudsen, G.P., Pedersen, J., Klingenberg, O., Lygren, I., and Ørstavik, K.H. (2007). Increased skewing of X chromosome inactivation with age in both blood and buccal cells. Cytogenet Genome Res 116: 24–28, https://doi.org/10.1159/000097414.Search in Google Scholar PubMed

Kuhn, P.H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J.W., Kremmer, E., Rossner, S., and Lichtenthaler, S.F. (2010). Adam10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29: 3020–3032, https://doi.org/10.1038/emboj.2010.167.Search in Google Scholar PubMed PubMed Central

Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A., Vronskaya, M., van der Lee, S.J., Amlie-Wolf, A., et al.. (2019). Genetic meta-analysis of diagnosed alzheimer’s disease identifies new risk loci and implicates aβ, tau, immunity and lipid processing. Nat. Genet. 51: 414–430, https://doi.org/10.1038/s41588-019-0358-2.Search in Google Scholar PubMed PubMed Central

Lahn, B.T. and Page, D.C. (1999). Four evolutionary strata on the human X chromosome. Science 286: 964–967, https://doi.org/10.1126/science.286.5441.964.Search in Google Scholar PubMed

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al.. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45: 1452–1458, https://doi.org/10.1038/ng.2802.Search in Google Scholar PubMed PubMed Central

Lange, S.M., Armstrong, L.A., and Kulathu, Y. (2022). Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol. Cell 82: 15–29, https://doi.org/10.1016/j.molcel.2021.10.027.Search in Google Scholar PubMed

Le Meur, N., Holder-Espinasse, M., Jaillard, S., Goldenberg, A., Joriot, S., Amati-Bonneau, P., Guichet, A., Barth, M., Charollais, A., Journel, H., et al.. (2010). Mef2c haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47: 22–29, https://doi.org/10.1136/jmg.2009.069732.Search in Google Scholar PubMed PubMed Central

Lee, H.G., Perry, G., Moreira, P.I., Garrett, M.R., Liu, Q., Zhu, X., Takeda, A., Nunomura, A., and Smith, M.A. (2005). Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol. Med. 11: 164–169, https://doi.org/10.1016/j.molmed.2005.02.008.Search in Google Scholar PubMed

Lee, S., Lee, J.W., and Lee, S.K. (2012). Ut, a histone h3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev. Cell 22: 25–37, https://doi.org/10.1016/j.devcel.2011.11.009.Search in Google Scholar PubMed PubMed Central

Lei, X. and Jiao, J. (2018). Ut affects neural stem cell proliferation and differentiation through Pten signaling. Stem Cell Rep. 10: 1193–1207, https://doi.org/10.1016/j.stemcr.2018.02.008.Search in Google Scholar PubMed PubMed Central

Lescai, F., Pirazzini, C., D’Agostino, G., Santoro, A., Ghidoni, R., Benussi, L., Galimberti, D., Federica, E., Marchegiani, F., Cardelli, M., et al.. (2010). Failure to replicate an association of rs5984894 snp in the pcdh11x gene in a collection of 1,222 Alzheimer’s disease affected patients. J. Alzheimers Dis. 21: 385–388, https://doi.org/10.3233/jad-2010-091516.Search in Google Scholar PubMed

Li, R.M., Xiao, L., Zhang, T., Ren, D., and Zhu, H. (2023). Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage. Neural. Regen. Res. 18: 1347–1353, https://doi.org/10.4103/1673-5374.357902.Search in Google Scholar PubMed PubMed Central

Li, Z., Haines, C.J., and Han, Y. (2008). Micro-deletions" of the human Y chromosome and their relationship with male infertility. J. Genet. Genomics. 35: 193–199, https://doi.org/10.1016/s1673-8527(08)60027-2.Search in Google Scholar

Lin, Y., Fan, L., Zhang, R., Pan, H., and Li, Y. (2022). Arsd is responsible for carcinoma and amyloidosis of breast epithelial cells. Eur. J. Cell Biol. 101: 151199, https://doi.org/10.1016/j.ejcb.2022.151199.Search in Google Scholar PubMed

Liu, B., Ruan, J., Chen, M., Li, Z., Manjengwa, G., Schlüter, D., Song, W., and Wang, X. (2022). Deubiquitinating enzymes (dubs): decipher underlying basis of neurodegenerative diseases. Mol. Psychiatr. 27: 259–268, https://doi.org/10.1038/s41380-021-01233-8.Search in Google Scholar PubMed

Liu, C.C., Liu, C.C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9: 106–118, https://doi.org/10.1038/nrneurol.2012.263.Search in Google Scholar PubMed PubMed Central

Liu, W.S. (2019). Mammalian sex chromosome structure, gene content, and function in male fertility. Annu. Rev. Anim. Biosci. 7: 103–124, https://doi.org/10.1146/annurev-animal-020518-115332.Search in Google Scholar PubMed

Liyanage, V.R.B., Olson, C.O., Zachariah, R.M., Davie, J.R., and Rastegar, M. (2019). DNA methylation contributes to the differential expression levels of Mecp2 in male mice neurons and astrocytes. Int. J. Mol. Sci. 20: 3359–3373, https://doi.org/10.3390/ijms20081845.Search in Google Scholar PubMed PubMed Central

Loda, A., Collombet, S., and Heard, E. (2022). Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23: 231–249, https://doi.org/10.1038/s41580-021-00438-7.Search in Google Scholar PubMed

Lopes, A.M., Ross, N., Close, J., Dagnall, A., Amorim, A., and Crow, T.J. (2006). Inactivation status of pcdh11x: sexual dimorphisms in gene expression levels in brain. Hum. Genet. 119: 267–275, https://doi.org/10.1007/s00439-006-0134-0.Search in Google Scholar PubMed

Luo, W., Cruz-Ochoa, N.A., Seng, C., Egger, M., Lukacsovich, D., Lukacsovich, T., and Földy, C. (2022). Pcdh11x controls target specification of mossy fiber sprouting. Front. Neurosci. 16: 888362, https://doi.org/10.3389/fnins.2022.888362.Search in Google Scholar PubMed PubMed Central

Lyon, M.F. (1961). Gene action in the x-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373, https://doi.org/10.1038/190372a0.Search in Google Scholar PubMed

Mancino, S., Seneviratne, J., Mupo, A., Krueger, F., Oxley, D., Eckersley-Maslin, M.A., and Rocha, S.T.d. (2023). Stability of genomic imprinting and X-chromosome inactivation in the aging brain. bioRxiv 09: 560184.10.1101/2023.09.29.560184Search in Google Scholar

Manzoor, S. and Hoda, N. (2020). A comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer’s disease agents: a review. Eur. J. Med. Chem. 206: 112787, https://doi.org/10.1016/j.ejmech.2020.112787.Search in Google Scholar PubMed

Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M., and Greenberg, M.E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor mef2. Science 286: 785–790, https://doi.org/10.1126/science.286.5440.785.Search in Google Scholar PubMed

Maphis, N.M., Jiang, S., Binder, J., Wright, C., Gopalan, B., Lamb, B.T., and Bhaskar, K. (2017). Whole genome expression analysis in a mouse model of tauopathy identifies mecp2 as a possible regulator of tau pathology. Front. Mol. Neurosci. 10: 69, https://doi.org/10.3389/fnmol.2017.00069.Search in Google Scholar PubMed PubMed Central

McCarrey, A.C., An, Y., Kitner-Triolo, M.H., Ferrucci, L., and Resnick, S.M. (2016). Sex differences in cognitive trajectories in clinically normal older adults. Psychol. Aging 31: 166–175, https://doi.org/10.1037/pag0000070.Search in Google Scholar PubMed PubMed Central

Mengel-From, J., Lindahl-Jacobsen, R., Nygaard, M., Soerensen, M., Ørstavik, K.H., Hertz, J.M., Andersen-Ranberg, K., Tan, Q., and Christensen, K. (2021). Skewness of X-chromosome inactivation increases with age and varies across birth cohorts in elderly Danish women. Sci. Rep. 11: 4326, https://doi.org/10.1038/s41598-021-83702-2.Search in Google Scholar PubMed PubMed Central

Miar, A., Alvarez, V., Corao, A.I., Alonso, B., Díaz, M., Menéndez, M., Martínez, C., Calatayud, M., Morís, G., and Coto, E. (2011). Lack of association between protocadherin 11-x/y (pcdh11x and pcdh11y) polymorphisms and late onset Alzheimer’s disease. Brain Res. 1383: 252–256, https://doi.org/10.1016/j.brainres.2011.01.054.Search in Google Scholar PubMed

Migeon, B.R., Axelman, J., and Beggs, A.H. (1988). Effect of ageing on reactivation of the human X-linked hprt locus. Nature 335: 93–96, https://doi.org/10.1038/335093a0.Search in Google Scholar PubMed

Migliore, L., Nicolì, V., and Stoccoro, A. (2021). Gender specific differences in disease susceptibility: the role of epigenetics. Biomedicines 9: 777–800, https://doi.org/10.3390/biomedicines9060652.Search in Google Scholar PubMed PubMed Central

Miller, S.A., Mohn, S.E., and Weinmann, A.S. (2010). Jmjd3 and utx play a demethylase-independent role in chromatin remodeling to regulate t-box family member-dependent gene expression. Mol. Cell 40: 594–605, https://doi.org/10.1016/j.molcel.2010.10.028.Search in Google Scholar PubMed PubMed Central

Mills, Z.B., Faull, R.L.M., and Kwakowsky, A. (2023). Is hormone replacement therapy a risk factor or a therapeutic option for Alzheimer’s disease? Int. J. Mol. Sci. 24: 18382–18415, https://doi.org/10.3390/ijms24043205.Search in Google Scholar PubMed PubMed Central

Minks, J., Robinson, W.P., and Brown, C.J. (2008). A skewed view of X chromosome inactivation. J. Clin. Invest. 118: 20–23, https://doi.org/10.1172/jci34470.Search in Google Scholar PubMed PubMed Central

Miyake, N., Mizuno, S., Okamoto, N., Ohashi, H., Shiina, M., Ogata, K., Tsurusaki, Y., Nakashima, M., Saitsu, H., Niikawa, N., et al.. (2013). Kdm6a point mutations cause Kabuki syndrome. Hum. Mutat. 34: 108–110, https://doi.org/10.1002/humu.22229.Search in Google Scholar PubMed

Montgomery, K.R., Louis Sam Titus, A.S.C., Wang, L., and D’Mello, S.R. (2018). Elevated mecp2 in mice causes neurodegeneration involving tau dysregulation and excitotoxicity: implications for the understanding and treatment of Mecp2 triplication syndrome. Mol. Neurobiol. 55: 9057–9074, https://doi.org/10.1007/s12035-018-1046-4.Search in Google Scholar PubMed PubMed Central

Morey, C. and Avner, P. (2011). The demoiselle of X-inactivation: 50 years old and as trendy and mesmerising as ever. PLoS Genet. 7: e1002212, https://doi.org/10.1371/journal.pgen.1002212.Search in Google Scholar PubMed PubMed Central

Nelson, P.T., Alafuzoff, I., Bigio, E.H., Bouras, C., Braak, H., Cairns, N.J., Castellani, R.J., Crain, B.J., Davies, P., Del Tredici, K., et al.. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71: 362–381, https://doi.org/10.1097/nen.0b013e31825018f7.Search in Google Scholar

Neu, S.C., Pa, J., Kukull, W., Beekly, D., Kuzma, A., Gangadharan, P., Wang, L.S., Romero, K., Arneric, S.P., Redolfi, A., et al.. (2017). Apolipoprotein E genotype and sex risk factors for alzheimer disease: a meta-analysis. JAMA Neurol. 74: 1178–1189, https://doi.org/10.1001/jamaneurol.2017.2188.Search in Google Scholar PubMed PubMed Central

Okamoto, I., Nakamura, T., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Nakamura, S.I., Ema, M., Yamamoto, T., and Saitou, M. (2021). The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 374: eabd8887, https://doi.org/10.1126/science.abd8887.Search in Google Scholar PubMed

Ossenkoppele, R., van der Kant, R., and Hansson, O. (2022). Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 21: 726–734, https://doi.org/10.1016/s1474-4422(22)00168-5.Search in Google Scholar

Pal, S. and Tyler, J.K. (2016). Epigenetics and aging. Sci. Adv. 2: e1600584, https://doi.org/10.1126/sciadv.1600584.Search in Google Scholar PubMed PubMed Central

Pancho, A., Aerts, T., Mitsogiannis, M.D., and Seuntjens, E. (2020). Protocadherins at the crossroad of signaling pathways. Front. Mol. Neurosci. 13: 117, https://doi.org/10.3389/fnmol.2020.00117.Search in Google Scholar PubMed PubMed Central

Patrat, C., Okamoto, I., Diabangouaya, P., Vialon, V., Le Baccon, P., Chow, J., and Heard, E. (2009). Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc. Natl. Acad. Sci. U. S. A. 106: 5198–5203, https://doi.org/10.1073/pnas.0810683106.Search in Google Scholar PubMed PubMed Central

Patrat, C., Ouimette, J.F., and Rougeulle, C. (2020). X chromosome inactivation in human development. Development 147: 21–33, https://doi.org/10.1242/dev.183095.Search in Google Scholar PubMed

Peeters, S.B., Cotton, A.M., and Brown, C.J. (2014). Variable escape from x-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 36: 746–756, https://doi.org/10.1002/bies.201400032.Search in Google Scholar PubMed PubMed Central

Pereira, J.D., Sansom, S.N., Smith, J., Dobenecker, M.W., Tarakhovsky, A., and Livesey, F.J. (2010). Ezh2, the histone methyltransferase of prc2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 107: 15957–15962, https://doi.org/10.1073/pnas.1002530107.Search in Google Scholar PubMed PubMed Central

Petropoulos, S., Edsgärd, D., Reinius, B., Deng, Q., Panula, S.P., Codeluppi, S., Plaza Reyes, A., Linnarsson, S., Sandberg, R., and Lanner, F. (2016). Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165: 1012–1026, https://doi.org/10.1016/j.cell.2016.03.023.Search in Google Scholar PubMed PubMed Central

Posynick, B.J. and Brown, C.J. (2019). Escape from X-chromosome inactivation: an evolutionary perspective. Front. Cell Dev. Biol. 7: 241, https://doi.org/10.3389/fcell.2019.00241.Search in Google Scholar PubMed PubMed Central

Rajan, K.B., Weuve, J., Barnes, L.L., McAninch, E.A., Wilson, R.S., and Evans, D.A. (2021). Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020-2060). Alzheimers Dement 17: 1966–1975, https://doi.org/10.1002/alz.12362.Search in Google Scholar PubMed PubMed Central

Ren, J., Zhang, S., Wang, X., Deng, Y., Zhao, Y., Xiao, Y., Liu, J., Chu, L., and Qi, X. (2022). Mef2c ameliorates learning, memory, Acta Biochim. Biophys. Sin.and molecular pathological changes in alzheimer’s disease in vivo and in vitro. Acta Biochim. Biophys. Sin. 54: 77–90, https://doi.org/10.3724/abbs.2021012.Search in Google Scholar PubMed PubMed Central

Ross, M.T., Grafham, D.V., Coffey, A.J., Scherer, S., McLay, K., Muzny, D., Platzer, M., Howell, G.R., Burrows, C., Bird, C.P., et al.. (2005). The DNA sequence of the human X chromosome. Nature 434: 325–337, https://doi.org/10.1038/nature03440.Search in Google Scholar PubMed PubMed Central

Rott, R., Szargel, R., Haskin, J., Bandopadhyay, R., Lees, A.J., Shani, V., and Engelender, S. (2011). Α-synuclein fate is determined by usp9x-regulated monoubiquitination. Proc. Natl. Acad. Sci. U. S. A. 108: 18666–18671, https://doi.org/10.1073/pnas.1105725108.Search in Google Scholar PubMed PubMed Central

Saha, P., Sarkar, S., Paidi, R.K., and Biswas, S.C. (2020). Timp-1: a key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer’s disease. Brain Behav. Immun. 87: 804–819, https://doi.org/10.1016/j.bbi.2020.03.014.Search in Google Scholar PubMed

Sanchez-Mut, J.V., Heyn, H., Silva, B.A., Dixsaut, L., Garcia-Esparcia, P., Vidal, E., Sayols, S., Glauser, L., Monteagudo-Sánchez, A., Perez-Tur, J., et al.. (2018). Pm20d1 is a quantitative trait locus associated with Alzheimer’s disease. Nat. Med. 24: 598–603, https://doi.org/10.1038/s41591-018-0013-y.Search in Google Scholar PubMed

Santos-Rebouças, C.B., Boy, R., Vianna, E.Q., Gonçalves, A.P., Piergiorge, R.M., Abdala, B.B., Dos Santos, J.M., Calassara, V., Machado, F.B., Medina-Acosta, E., et al.. (2020). Skewed X-chromosome inactivation and compensatory upregulation of escape genes precludes major clinical symptoms in a female with a large Xq deletion. Front. Genet. 11: 101, https://doi.org/10.3389/fgene.2020.00101.Search in Google Scholar PubMed PubMed Central

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., Cummings, J., and van der Flier, W.M. (2021). Alzheimer’s disease. Lancet 397: 1577–1590, https://doi.org/10.1016/s0140-6736(20)32205-4.Search in Google Scholar

Schoeftner, S., Blanco, R., Lopez de Silanes, I., Muñoz, P., Gómez-López, G., Flores, J.M., and Blasco, M.A. (2009). Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations. Proc. Natl. Acad. Sci. U. S. A. 106: 19393–19398, https://doi.org/10.1073/pnas.0909265106.Search in Google Scholar PubMed PubMed Central

Shaw, C., Hayes-Larson, E., Glymour, M.M., Dufouil, C., Hohman, T.J., Whitmer, R.A., Kobayashi, L.C., Brookmeyer, R., and Mayeda, E.R. (2021). Evaluation of selective survival and sex/gender differences in dementia incidence using a simulation model. JAMA Netw. Open 4: e211001, https://doi.org/10.1001/jamanetworkopen.2021.1001.Search in Google Scholar PubMed PubMed Central

Shumaker, D.K., Dechat, T., Kohlmaier, A., Adam, S.A., Bozovsky, M.R., Erdos, M.R., Eriksson, M., Goldman, A.E., Khuon, S., Collins, F.S., et al.. (2006). Mutant nuclear lamin a leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. U. S. A. 103: 8703–8708, https://doi.org/10.1073/pnas.0602569103.Search in Google Scholar PubMed PubMed Central

Spires-Jones, T.L. and Hyman, B.T. (2014). The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82: 756–771, https://doi.org/10.1016/j.neuron.2014.05.004.Search in Google Scholar PubMed PubMed Central

Sudbrak, R., Wieczorek, G., Nuber, U.A., Mann, W., Kirchner, R., Erdogan, F., Brown, C.J., Wöhrle, D., Sterk, P., Kalscheuer, V.M., et al.. (2001). X chromosome-specific cDNA arrays: identification of genes that escape from X-inactivation and other applications. Hum. Mol. Genet. 10: 77–83, https://doi.org/10.1093/hmg/10.1.77.Search in Google Scholar PubMed

Suh, J., Choi, S.H., Romano, D.M., Gannon, M.A., Lesinski, A.N., Kim, D.Y., and Tanzi, R.E. (2013). Adam10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 80: 385–401, https://doi.org/10.1016/j.neuron.2013.08.035.Search in Google Scholar PubMed PubMed Central

Tan, S.S., Williams, E.A., and Tam, P.P. (1993). X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo. Nat. Genet. 3: 170–174, https://doi.org/10.1038/ng0293-170.Search in Google Scholar PubMed

Tang, G.B., Zeng, Y.Q., Liu, P.P., Mi, T.W., Zhang, S.F., Dai, S.K., Tang, Q.Y., Yang, L., Xu, Y.J., Yan, H.L., et al.. (2017). The histone h3k27 demethylase Ut regulates synaptic plasticity and cognitive behaviors in mice. Front. Mol. Neurosci. 10: 267, https://doi.org/10.3389/fnmol.2017.00267.Search in Google Scholar PubMed PubMed Central

Tfilin, M. and Turgeman, G. (2019). Interleukine-17 administration modulates adult hippocampal neurogenesis and improves spatial learning in mice. J. Mol. Neurosci. 69: 254–263, https://doi.org/10.1007/s12031-019-01354-4.Search in Google Scholar PubMed

Tie, F., Banerjee, R., Conrad, P.A., Scacheri, P.C., and Harte, P.J. (2012). Histone demethylase utx and chromatin remodeler brm bind directly to cbp and modulate acetylation of histone H3 lysine 27. Mol. Cell. Biol. 32: 2323–2334, https://doi.org/10.1128/mcb.06392-11.Search in Google Scholar PubMed PubMed Central

Trinczek, B., Brajenovic, M., Ebneth, A., and Drewes, G. (2004). Mark4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J. Biol. Chem. 279: 5915–5923, https://doi.org/10.1074/jbc.m304528200.Search in Google Scholar

Tukiainen, T., Villani, A.C., Yen, A., Rivas, M.A., Marshall, J.L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., et al.. (2017). Landscape of X chromosome inactivation across human tissues. Nature 550: 244–248, https://doi.org/10.1038/nature24265.Search in Google Scholar PubMed PubMed Central

Vegeto, E., Villa, A., Della Torre, S., Crippa, V., Rusmini, P., Cristofani, R., Galbiati, M., Maggi, A., and Poletti, A. (2020). The role of sex and sex hormones in neurodegenerative diseases. Endocr. Rev. 41: 273–319, https://doi.org/10.1210/endrev/bnz005.Search in Google Scholar PubMed PubMed Central

Villapol, S., Loane, D.J., and Burns, M.P. (2017). Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 65: 1423–1438, https://doi.org/10.1002/glia.23171.Search in Google Scholar PubMed PubMed Central

Wang, J., Ma, S.F., Yun, Q., Liu, W.J., Zhai, H.R., Shi, H.Z., Xie, L.G., Qian, J.J., Zhao, C.J., and Zhang, W.N. (2022). Foxg1 as a potential therapeutic target for Alzheimer’s disease with a particular focus on cell cycle regulation. J. Alzheimers Dis. 86: 1255–1273, https://doi.org/10.3233/jad-215144.Search in Google Scholar

Wang, J.Z., Xia, Y.Y., Grundke-Iqbal, I., and Iqbal, K. (2013). Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis. 33: S123–S139, https://doi.org/10.3233/jad-2012-129031.Search in Google Scholar

Wang, P., Joberty, G., Buist, A., Vanoosthuyse, A., Stancu, I.C., Vasconcelos, B., Pierrot, N., Faelth-Savitski, M., Kienlen-Campard, P., Octave, J.N., et al.. (2017). Tau interactome mapping based identification of otub1 as tau deubiquitinase involved in accumulation of pathological tau forms in vitro and in vivo. Acta Neuropathol. 133: 731–749, https://doi.org/10.1007/s00401-016-1663-9.Search in Google Scholar PubMed PubMed Central

Wang, X., Douglas, K.C., Vandeberg, J.L., Clark, A.G., and Samollow, P.B. (2014). Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, monodelphis domestica. Genome Res. 24: 70–83, https://doi.org/10.1101/gr.161919.113.Search in Google Scholar PubMed PubMed Central

Wang, Y.M., Zheng, Y.F., Yang, S.Y., Yang, Z.M., Zhang, L.N., He, Y.Q., Gong, X.H., Liu, D., Finnell, R.H., Qiu, Z.L., et al.. (2019). MicroRNA-197 controls ADAM10 expression to mediate mecp2’s role in the differentiation of neuronal progenitors. Cell Death Differ. 26: 1863–1879, https://doi.org/10.1038/s41418-018-0257-6.Search in Google Scholar PubMed PubMed Central

Wareham, K.A., Lyon, M.F., Glenister, P.H., and Williams, E.D. (1987). Age related reactivation of an X-linked gene. Nature 327: 725–727, https://doi.org/10.1038/327725a0.Search in Google Scholar PubMed

Waters, S.A., Capraro, A., McIntyre, K.L., Marshall Graves, J.A., and Waters, P.D. (2018). The methylome of vertebrate sex chromosomes. Genes 9: 699–711, https://doi.org/10.3390/genes9050230.Search in Google Scholar PubMed PubMed Central

Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schübeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37: 853–862, https://doi.org/10.1038/ng1598.Search in Google Scholar PubMed

Werner, J.M., Ballouz, S., Hover, J., and Gillis, J. (2022). Variability of cross-tissue x-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev. Cell 57: 1995–2008.e1995, https://doi.org/10.1016/j.devcel.2022.07.007.Search in Google Scholar PubMed PubMed Central

Więckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M., and Wojda, U. (2021). Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 70: 101397, https://doi.org/10.1016/j.arr.2021.101397.Search in Google Scholar PubMed

Wilkins, H.M. and Swerdlow, R.H. (2021). Mitochondrial links between brain aging and alzheimer’s disease. Transl. Neurodegener. 10: 33, https://doi.org/10.1186/s40035-021-00261-2.Search in Google Scholar PubMed PubMed Central

Wu, C., Niu, L., Yan, Z., Wang, C., Liu, N., Dai, Y., Zhang, P., and Xu, R. (2015). Pcdh11x negatively regulates dendritic branching. J. Mol. Neurosci. 56: 822–828, https://doi.org/10.1007/s12031-015-0515-8.Search in Google Scholar PubMed

Xie, A.J., Liu, E.J., Huang, H.Z., Hu, Y., Li, K., Lu, Y., Wang, J.Z., and Zhu, L.Q. (2016). Cnga2 knockout mice display Alzheimer’s-like behavior abnormities and pathological changes. Mol. Neurobiol. 53: 4992–4999, https://doi.org/10.1007/s12035-015-9421-x.Search in Google Scholar PubMed

Xu, Z., Li, X., Chen, J., Zhao, J., Wang, J., Ji, Y., Shen, Y., Han, L., Shi, J., and Zhang, D. (2016). Usp11, deubiquitinating enzyme, associated with neuronal apoptosis following intracerebral hemorrhage. J. Mol. Neurosci. 58: 16–27, https://doi.org/10.1007/s12031-015-0644-0.Search in Google Scholar PubMed

Yan, Y., Wang, X., Chaput, D., Shin, M.K., Koh, Y., Gan, L., Pieper, A.A., Woo, J.A., and Kang, D.E. (2022). X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 185: 3913–3930.e3919, https://doi.org/10.1016/j.cell.2022.09.002.Search in Google Scholar PubMed PubMed Central

Yang, X., Xu, B., Mulvey, B., Evans, M., Jordan, S., Wang, Y.D., Pagala, V., Peng, J., Fan, Y., Patel, A., et al.. (2019). Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by Ut and 53bp1. Nat. Neurosci. 22: 362–373, https://doi.org/10.1038/s41593-018-0328-5.Search in Google Scholar PubMed PubMed Central

Yeates, E.F. and Tesco, G. (2016). The endosome-associated deubiquitinating enzyme usp8 regulates BACE1 enzyme ubiquitination and degradation. J. Biol. Chem. 291: 15753–15766, https://doi.org/10.1074/jbc.m116.718023.Search in Google Scholar PubMed PubMed Central

Zhang, J., Ji, F., Liu, Y., Lei, X., Li, H., Ji, G., Yuan, Z., and Jiao, J. (2014a). Ezh2 regulates adult hippocampal neurogenesis and memory. J. Neurosci. 34: 5184–5199, https://doi.org/10.1523/jneurosci.4129-13.2014.Search in Google Scholar

Zhang, P., Wu, C., Liu, N., Niu, L., Yan, Z., Feng, Y., and Xu, R. (2014b). Protocadherin 11 x regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J. Mol. Neurosci. 54: 199–210, https://doi.org/10.1007/s12031-014-0275-x.Search in Google Scholar PubMed

Zhang, W., Li, X., Xu, J., Wang, Y., Xing, Z., Hu, S., Fan, Q., Lu, S., Cheng, J., Gu, J., et al. (2022). The RSL3 induction of KLK lung adenocarcinoma cell ferroptosis by inhibition of USP11 activity and the NRF2-GSH axis. Cancers 14: 4169–4185, https://doi.org/10.3390/cancers14215233.Search in Google Scholar PubMed PubMed Central

Received: 2023-09-06
Accepted: 2023-11-24
Published Online: 2024-01-01
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0108/html
Scroll to top button