Skip to main content
Log in

Air quality monitoring in Ukraine during 2022 military conflict using Sentinel-5P imagery

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Air quality assessment is an important task, due to the adverse effects of air pollution on human health. This importance is more highlighted when it comes to exceptional events such as war. Early 2022 witnessed the start of a military conflict between Ukraine and Russia. As with any similar event, this war influences the environment in different aspects. The objective of this study is air quality monitoring in Ukraine using Sentinel-5P imagery and Google Earth Engine. To this end, the monthly concentration of four gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO) in 2022 is compared to 2019 and 2021 as business-as-usual (BAU) periods. Further statistical focus of this evaluation is on five major cities, namely Kiev, Kharkiv, Donetsk, Kherson, and Lviv. According to the results, the general trend of the O3 concentration is found to be increasing, whereas NO2, HCHO, and CO follow mostly a decreasing trend. However, the records of Lviv in terms of NO2 and HCHO indicate significant discrepancies with other cities that are deemed warfronts. Moreover, based on the applied t-test, the differences between the 2022 concentrations and BAU years in most cases are statistically significant. In summary, this study revealed evident effects of the ongoing war on the anthropogenic activities in Ukraine and, consequently, changes in air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data used for the current study is available publicly from Sentinel-5 satellites.

References

  • Access_Hub CO (n.d.) https://scihub.copernicus.eu/

  • Adam MG, Tran PT, Balasubramanian R (2021) Air quality changes in cities during the COVID-19 lockdown: a critical review. Atmos Res 264:105823

    Article  CAS  Google Scholar 

  • Al-Alola SS, Alkadi II, Alogayell HM, Mohamed SA, Ismail IY (2022) Air quality estimation using remote sensing and GIS-spatial technologies along Al-Shamal train pathway, Al-Qurayyat City in Saudi Arabia. Environ Sustain Indic 15:100184

    Google Scholar 

  • Ali T, Abouleish M, Gawai R, Hamdan N, Elaksher A (2022) Ammonium nitrate explosion at the main port in Beirut (Lebanon) and air pollution: an analysis of the spatiotemporal distribution of nitrogen dioxide. Euro-Mediterr J Environ Integr 7(1):21–27

    Article  Google Scholar 

  • Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, Moghaddam SHA, Mahdavi S, Ghahremanloo M, Parsian S (2020) Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J Select Topics Appl Earth Observ Remote Sens 13:5326–5350

    Article  Google Scholar 

  • Anjum MS, Ali SM, Subhani MA, Anwar MN, Nizami A-S, Ashraf U, Khokhar MF (2021) An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; a critical review. J Hazard Mater 402:123943

    Article  CAS  Google Scholar 

  • Asadi Nalivan O, Mousavi Tayebi SA, Mehrabi M, Ghasemieh H, Scaioni M (2022) A hybrid intelligent model for spatial analysis of groundwater potential around Urmia Lake, Iran. Stochastic Environ Res Risk Assess 1–18

  • Ayoobi AW, Ahmadi H, Inceoglu M, Pekkan E (2022) Seasonal impacts of buildings’ energy consumption on the variation and spatial distribution of air pollutant over Kabul city: application of Sentinel—5P TROPOMI products. Air Qual Atmos Health 15(1):73–83

    Article  CAS  Google Scholar 

  • BBC (2022) Ukraine war: US estimates 200,000 military casualties on all sides. https://www.bbc.com/news/world-europe-63580372.Accessed 17 Mar 2023

  • Bhatkar R, Syamala SRNA, Varghese JT (2020) Impact of population count on the presence of nitrogen dioxide in United Arab Emirates using Sentinel-5P satellite data. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). IEEE. pp 231–235

  • Bočková S, Bohovic R, Hrnčiar M, Muroň M, Filippovová P, Skalský M, Soroka M (2020) Air pollution in Ukraine from space. Prague, Arnika-Citizen Support Centre

    Google Scholar 

  • Bodah BW, Neckel A, Maculan LS, Milanes CB, Korcelski C, Ramírez O, Mendez-Espinosa JF, Bodah ET, Oliveira ML (2022) Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J Cleaner Product 357:131960

    Article  CAS  Google Scholar 

  • Broomandi P, Karaca F, Nikfal A, Jahanbakhshi A, Tamjidi M, Kim JR (2020) Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual Res 20(8):1793–1804

    Article  CAS  Google Scholar 

  • Bullock EL, Woodcock CE, Olofsson P (2020) Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens Environ 238:110968

    Article  Google Scholar 

  • Cancer IAfRo (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. pp 478–478

  • Catalog-Sentinel-5P EED, https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p

  • Cofano A, Cigna F, Santamaria Amato L, Siciliani de Cumis M, Tapete D (2021) Exploiting Sentinel-5P TROPOMI and ground sensor data for the detection of volcanic SO2 plumes and activity in 2018–2021 at Stromboli. Italy Sensors 21(21):6991

    Article  CAS  Google Scholar 

  • Collivignarelli MC, Abbà A, Bertanza G, Pedrazzani R, Ricciardi P, Miino MC (2020) Lockdown for COVID-2019 in Milan: what are the effects on air quality? Sci Total Environ 732:139280

    Article  CAS  Google Scholar 

  • Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y (2006) Adverse health effects of outdoor air pollutants. Environ Int 32(6):815–830

    Article  CAS  Google Scholar 

  • Data_Hub S-PP-O (n.d.)

  • De Santis D, Petracca I, Corradini S, Guerrieri L, Picchiani M, Merucci L, Stelitano D, Del Frate F, Prata F, Schiavon G (2021) Volcanic SO2 near-real time retrieval using TROPOMI data and neural networks: The December 2018 Etna test case. 2021 IEEE Int Geosci Remote Sens Symposium IGARSS. IEEE. pp 8480–8483

  • Duncan BN, Prados AI, Lamsal LN, Liu Y, Streets DG, Gupta P, Hilsenrath E, Kahn RA, Nielsen JE, Beyersdorf AJ (2014) Satellite data of atmospheric pollution for US air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos Environ 94:647–662

    Article  CAS  Google Scholar 

  • Earth Engine Apps TE (n.d.)

  • EEA EEA (2018) Air quality in Europe — 2018 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2018

  • EPA (2010) Integrated Science Assessment (ISA) for Carbon Monoxide (Final Report, Jan 2010) https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=218686 Accessed 17 Feb 2023

  • ESA, European Space Agency-Sentinel-5P. https://sentinel.esa.int/web/sentinel/missions/sentinel-5p

  • ESA, Mission Status Reports. https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/mission-status Accessed 17 Feb 2023

  • Euronews (2022) Ukraine war: which weapons are being used in Russia’s invasion? https://www.euronews.com/next/2022/03/07/ukraine-war-what-weapons-tech-is-being-used-in-russia-s-invasionAccessed 17 Feb 2023

  • Euronews, Russia’s War Will Shrink Ukraine’s Economy by 45% This Year, World Bank Says. https://www.euronews.com/2022/04/11/russia-s-war-will-shrink-ukraine-s-economy-by-45-this-year-world-bank-saysAccessed 17 Mar 2023 

  • Filippini T, Rothman KJ, Goffi A, Ferrari F, Maffeis G, Orsini N, Vinceti M (2020) Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Sci Total Environ 739:140278

    Article  CAS  Google Scholar 

  • Ghannadi MA, Shahri M, Alebooyeh S, Moradi A (2021) Evaluation of sulfur dioxide emissions in thermal power plant and its effect on air quality in the neighboring city using Sentinel-5 images (case study: Iran, Arak). Earth Observ Geomatics Eng 5(1):36–45

    Google Scholar 

  • Gong P, Li X, Wang J, Bai Y, Chen B, Hu T, Liu X, Xu B, Yang J, Zhang W (2020) Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens Environ 236:111510

    Article  Google Scholar 

  • Griffin D, Zhao X, McLinden CA, Boersma F, Bourassa A, Dammers E, Degenstein D, Eskes H, Fehr L, Fioletov V (2019) High-resolution mapping of nitrogen dioxide with TROPOMI: first results and validation over the Canadian oil sands. Geophys Res Lett 46(2):1049–1060

    Article  CAS  Google Scholar 

  • Guanter L, Bacour C, Schneider A, Aben I, van Kempen TA, Maignan F, Retscher C, Köhler P, Frankenberg C, Joiner J (2021) The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst Sci Data 13(11):5423–5440

    Article  Google Scholar 

  • Gupta RC (2015) Handbook of toxicology of chemical warfare agents. Academic Press

    Google Scholar 

  • Hao B, Ma M, Li S, Li Q, Hao D, Huang J, Ge Z, Yang H, Han X (2019) Land use change and climate variation in the three gorges reservoir catchment from 2000 to 2015 based on the Google Earth Engine. Sensors 19(9):2118

    Article  Google Scholar 

  • Huang H, Chen Y, Clinton N, Wang J, Wang X, Liu C, Gong P, Yang J, Bai Y, Zheng Y (2017) Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens Environ 202:166–176

    Article  Google Scholar 

  • Humdata, Ukraine Data Explorer, Total Number of Conflict Events. https://data.humdata.org/visualization/ukraine-humanitarian-operations/?tab=chart-view Accessed Accessed on 17–03–2023

  • Husain T (1998) Terrestrial and atmospheric environment during and after the Gulf War. Environ Int 24(1–2):189–196

    Article  CAS  Google Scholar 

  • ISW (n.d.) Institute for the Study of War and AEI's Critical Threats Project

  • Kaplan G, Avdan ZY (2020) Space-borne air pollution observation from Sentinel-5P TROPOMI: relationship between pollutants, geographical and demographic data. Int J Eng Geosci 5(3):130–137

    Article  Google Scholar 

  • Küchler T, Noël S, Bovensmann H, Burrows JP, Wagner T, Borger C, Borsdorff T, Schneider A (2022) Total water vapour columns derived from Sentinel 5P using the AMC-DOAS method. Atmos Measure Techn 15(2):297–320

    Article  Google Scholar 

  • Kumar L, Mutanga O (2018) Google Earth Engine applications since inception: usage, trends, and potential. Remote Sens 10(10):1509

    Article  Google Scholar 

  • Leasure DR, Kashyap R, Rampazzo F, Elbers B, Dooley C, Weber I, Fatehkia M, Verhagen MD, Frey A, Yan J (2022) Ukraine crisis: monitoring population displacement through social media activity

  • Levelt PF, Stein Zweers DC, Aben I, Bauwens M, Borsdorff T, De Smedt I, Eskes HJ, Lerot C, Loyola DG, Romahn F (2022) Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI. Atmos Chem Phys 22(15):10319–10351

    Article  CAS  Google Scholar 

  • Liu C, Gao M, Hu Q, Brasseur GP, Carmichael GR (2021) Stereoscopic monitoring: a promising strategy to advance diagnostic and prediction of air pollution. Bull Am Meteor Soc 102(4):E730–E737

    Article  Google Scholar 

  • Lorente A, Borsdorff T, Butz A, Hasekamp O, Schneider A, Wu L, Hase F, Kivi R, Wunch D, Pollard DF (2021) Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos Measure Techn 14(1):665–684

    Article  CAS  Google Scholar 

  • Magro C, Nunes L, Gonçalves OC, Neng NR, Nogueira JM, Rego FC, Vieira P (2021) Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data. Fire 4(2):25

    Article  Google Scholar 

  • Mandal SP, Ranjan AK, Parida BR, Behera SN (2023) Assessing aerosol and nitrogen dioxide concentration in major urban cities over the Himalayan Region during the COVID-19 lockdown phases. Handbook of Himalayan Ecosystems and Sustainability, Volume 2. CRC Press. pp 293–315

  • Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42(34):7823–7843

    Article  CAS  Google Scholar 

  • Matci DK, Kaplan G, Avdan U (2022) Changes in air quality over different land covers associated with COVID-19 in Turkey aided by GEE. Environ Monit Assess 194(10):762

    Article  Google Scholar 

  • Mehrabi M, Scaioni M, Previtali M (2023) Forecasting air quality in Kiev during 2022 military conflict using Sentinel 5P and optimized machine learning. IEEE Trans Geosci Remote Sens

  • Mehrabi M, Moayedi H (2021) Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms. Environ Earth Sci 80(24):1–20. https://doi.org/10.1007/s12665-021-10098-7

    Article  Google Scholar 

  • Menut L, Bessagnet B, Siour G, Mailler S, Pennel R, Cholakian A (2020) Impact of lockdown measures to combat Covid-19 on air quality over Western Europe. Sci Total Environ 741:140426

    Article  CAS  Google Scholar 

  • Muniraj K, Panneerselvam B, Devaraj S, Jesudhas CJ, Sudalaimuthu K (2021) Evaluating the effectiveness of emissions reduction measures and ambient air quality variability through ground-based and Sentinel-5P observations under the auspices of COVID pandemic lockdown in Tamil Nadu, India. Int J Environ Anal Chem 1–12

  • Nakada LYK, Urban RC (2020) COVID-19 pandemic: impacts on the air quality during the partial lockdown in São Paulo state. Brazil. Sci Total Environ 730:139087

    Article  CAS  Google Scholar 

  • Napi NM, Abdullah S, Ahmed A, Mansor AA, Ismail M (2020) Annual and diurnal trend of surface ozone (O3) in industrial area. IOP Conference Series: Earth and Environmental Science. IOP Publishing. p 012062

  • Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446

    Article  CAS  Google Scholar 

  • NPR (2023) U.S., NATO countries announce massive weapons package for Ukraine. https://www.npr.org/2023/01/20/1150264976/u-s-nato-countries-announce-massive-weapons-package-for-ukraineAccessed 17 Feb 2023

  • Nuvolone D, Petri D, Voller F (2018) The effects of ozone on human health. Environ Sci Pollut Res 25:8074–8088

    Article  CAS  Google Scholar 

  • Ovdiienko O, Hryhorak M, Marchuk V, Bugayko D (2021) An assessment of the aviation industry’s impact on air pollution from its emissions: worldwide and the Ukraine. Environ Socio-Econ Studies 9(2):1–10

    Article  Google Scholar 

  • Pereira P, Bašić F, Bogunovic I, Barcelo D (2022) Russian-Ukrainian war impacts the total environment. Sci Total Environ 837:155865

    Article  CAS  Google Scholar 

  • Piccoli GB, Brunori G, Gesualdo L, Kalantar-Zadeh K (2022) The impact of the Russian-Ukrainian war for people with chronic diseases. Nat Rev Nephrol 18(7):411–412

    Article  Google Scholar 

  • Popov O, Iatsyshyn A, Kovach V, Artemchuk V, Kameneva I, Taraduda D, Sobyna V, Sokolov D, Dement M, Yatsyshyn T (2020) Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. J Health Pollut 10:25

    Article  Google Scholar 

  • Rawtani D, Gupta G, Khatri N, Rao PK, Hussain CM (2022) Environmental damages due to war in Ukraine: a perspective. Sci Total Environ 850:157932

    Article  CAS  Google Scholar 

  • Reuters (n.d.) Timeline: The events leading up to Russia's invasion of Ukraine. https://www.reuters.com/world/europe/events-leading-up-russias-invasion-ukraine-2022-02-28/

  • Righini G, Cappelletti A, Ciucci A, Cremona G, Piersanti A, Vitali L, Ciancarella L (2014) GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos Environ 97:121–129

    Article  CAS  Google Scholar 

  • Rybarczyk Y, Zalakeviciute R (2018) Machine learning approaches for outdoor air quality modelling: a systematic review. Appl Sci 8(12):2570

    Article  Google Scholar 

  • Safarianzengir V, Sobhani B, Yazdani MH, Kianian M (2020) Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran, located in the Middle East. Air Qual Atmos Health 13(6):709–719

    Article  CAS  Google Scholar 

  • Savenets M (2021) Air pollution in Ukraine: a view from the Sentinel-5P satellite. Q J Hungarian Meteorol Serv 125(2):271–290

    Google Scholar 

  • Savenets M, Dvoretska I, Nadtochii L, Zhemera N (2022) Comparison of TROPOMI NO2, CO, HCHO, and SO2 data against ground-level measurements in close proximity to large anthropogenic emission sources in the example of Ukraine. Meteorol Appl 29(6):e2108

    Article  Google Scholar 

  • Sentinel Hub EB (n.d.)

  • Sha MK, Langerock B, Blavier J-FL, Blumenstock T, Borsdorff T, Buschmann M, Dehn A, De Mazière M, Deutscher NM, Feist DG (2021) Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos Measure Techn 14(9):6249–6304

    Article  CAS  Google Scholar 

  • Sharifi A, Felegari S (2022) Nitrogen dioxide (NO2) pollution monitoring with sentinel-5P satellite imagery over during the coronavirus pandemic (case study: Tehran). Remote Sens Lett 13(10):1029–1039

    Article  Google Scholar 

  • Shelestov A, Yailymova H, Yailymov B, Kussul N (2021) Air quality estimation in Ukraine using SDG 11.6. 2 indicator assessment. Remote Sens 13(23):4769

    Article  Google Scholar 

  • Shikwambana L, Mhangara P, Mbatha N (2020) Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int J Appl Earth Observ Geoinform 91:102130

    Article  Google Scholar 

  • Shvidenko A, Buksha I, Krakovska S, Lakyda P (2017) Vulnerability of Ukrainian forests to climate change. Sustainability 9(7):1152

    Article  Google Scholar 

  • Sofieva VF, Lee HS, Tamminen J, Lerot C, Romahn F, Loyola DG (2021) A method for random uncertainties validation and probing the natural variability with application to TROPOMI on board Sentinel-5P total ozone measurements. Atmos Measure Techn 14(4):2993–3002

    Article  CAS  Google Scholar 

  • Sokhi RS, Singh V, Querol X, Finardi S, Targino AC, de Fatima Andrade M, Pavlovic R, Garland RM, Massagué J, Kong S (2021) A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ Int 157:106818

    Article  CAS  Google Scholar 

  • Statista (2023) Number of civilian casualties in Ukraine during Russia’s invasion verified by OHCHR as of January 29, 2023

  • Stratoulias D, Nuthammachot N (2020) Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci Total Environ 746:141320

    Article  CAS  Google Scholar 

  • Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B (2020) Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J Photogramm Remote Sens 164:152–170

    Article  Google Scholar 

  • TROPOMI MPC (n.d.) http://www.tropomi.eu/data-products/mission-performance-centre

  • Van Geffen J, Eskes H, Compernolle S, Pinardi G, Verhoelst T, Lambert J-C, Sneep M, Ter Linden M, Ludewig A, Boersma KF (2022) Sentinel-5P TROPOMI NO 2 retrieval: impact of version v2. 2 improvements and comparisons with OMI and ground-based data. Atmos Measure Techn 15(7):2037–2060

    Article  Google Scholar 

  • Vigouroux C, Langerock B, Bauer Aquino CA, Blumenstock T, Cheng Z, De Mazière M, De Smedt I, Grutter M, Hannigan JW, Jones N (2020) TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmos Measure Techn 13(7):3751–3767

    Article  CAS  Google Scholar 

  • Vîrghileanu M, Săvulescu I, Mihai B-A, Nistor C, Dobre R (2020) Nitrogen dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens 12(21):3575

    Article  Google Scholar 

  • Volke MI, Abarca-del-Rio R, Ulloa-Tesser C (2023) Impact of mobility restrictions on NO2 concentrations in key Latin American cities during the first wave of the COVID-19 pandemic. Urban Clim 48:101412

    Article  Google Scholar 

  • Wang L, Li M, Yu S, Chen X, Li Z, Zhang Y, Jiang L, Xia Y, Li J, Liu W (2020) Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality. Environ Chem Lett 18(5):1713–1723

    Article  CAS  Google Scholar 

  • Washingtonpost (2022) The Russian weaponry being used to attack Ukraine. https://www.washingtonpost.com/national-security/2022/02/24/ukraine-russia-weapons/ Accessed 17 Feb 2023

  • West JJ, Fiore AM, Horowitz LW, Mauzerall DL (2006) Global health benefits of mitigating ozone pollution with methane emission controls. Proc Natl Acad Sci 103(11):3988–3993

    Article  CAS  Google Scholar 

  • Wikipedia (2022) List of Russo-Ukrainian conflict military equipment. https://en.wikipedia.org/wiki/List_of_Russo-Ukrainian_conflict_military_equipment Accessed 17 Feb 2023

  • World_Bank (2016) Air Pollution Deaths Cost Global Economy US$225 Billion

  • World_Bank (n.d.) Climatology. https://climateknowledgeportal.worldbank.org/country/ukraine/climate-data-historical Accessed 17 Feb 2023

  • World_Bank (n.d.) Population https://data.worldbank.org/indicator/SP.POP.TOTL?end=2021&locations=UA&name_desc=false&start=2020 Accessed 17 Feb 2023

  • Yilmaz OS, Acar U, Sanli FB, Gulgen F, Ates AM (2023) Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Sci Inform 1–20

  • Zalakeviciute R, Mejia D, Alvarez H, Bermeo X, Bonilla-Bedoya S, Rybarczyk Y, Lamb B (2022) War impact on air quality in Ukraine. Sustainability 14(21):13832

    Article  CAS  Google Scholar 

  • Zhang C, Hu Q, Su W, Xing C, Liu C (2023) Satellite spectroscopy reveals the atmospheric consequences of the 2022 Russia-Ukraine war. Sci Total Environ 869:161759

    Article  CAS  Google Scholar 

  • Zhao F, Liu C, Cai Z, Liu X, Bak J, Kim J, Hu Q, Xia C, Zhang C, Sun Y (2021) Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Sci Total Environ 764:142886

    Article  CAS  Google Scholar 

  • Zhao Q, Yu L, Li X, Peng D, Zhang Y, Gong P (2021b) Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens 13(18):3778

    Article  Google Scholar 

  • Zhu D, Cai C, Yang T, Zhou X (2018) A machine learning approach for air quality prediction: model regularization and optimization. Big Data Cognit Comput 2(1):5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data curation, methodology, writing—original draft preparation, writing—review and editing, software, and visualization were performed by MM. Optimization and supervision were performed by MS and MP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Mehrabi.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, M., Scaioni, M. & Previtali, M. Air quality monitoring in Ukraine during 2022 military conflict using Sentinel-5P imagery. Air Qual Atmos Health (2023). https://doi.org/10.1007/s11869-023-01488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11869-023-01488-w

Keywords

Navigation