Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Advances in Research on Protein Arginine Methyltransferase 2: Functions and Diseases

Author(s): Zhen-Qi Min, Ming-Jun Jiang, Xi-Lian Liu, Su-Peng Yuan, Ping-An Chen, Chu-Hao Wang, Ya-Jun Chen* and Xian-Peng Dai*

Volume 31, Issue 1, 2024

Published on: 28 December, 2023

Page: [25 - 42] Pages: 18

DOI: 10.2174/0109298665281395231211060535

Price: $65

Abstract

Protein arginine methylation stands as a prevalent post-translational modification process, exerting vital roles in cellular signal transduction, gene expression, and cell cycle regulation. Amidst the protein arginine methyltransferase (PRMT) family, PRMT2 stands as a less explored constituent. Nonetheless, its regulatory roles in transcriptional regulation, post-transcriptional modification, methylation activity regulation, immunoregulation, and developmental regulation have garnered attention. These capabilities enable PRMT2 to exert pivotal regulatory functions in certain malignancies, metabolic disorders, inflammatory diseases, and atherosclerosis. In this review, we highlight the structure and functions of PRMT2, emphasizing its association with diseases. We also discuss PRMT2 inhibitors and explore the potential for therapeutic targeting.

Keywords: PRMT2, epigenetic regulation, transcriptional regulation, malignancies, atherosclerosis, inflammation.

Graphical Abstract
[1]
Cheng, D.; Vemulapalli, V.; Bedford, M.T. Methods applied to the study of protein arginine methylation. Methods Enzymol., 2012, 512, 71-92.
[http://dx.doi.org/10.1016/B978-0-12-391940-3.00004-4] [PMID: 22910203]
[2]
Blanc, R.S.; Richard, S. Arginine methylation: The coming of age. Mol. Cell, 2017, 65(1), 8-24.
[http://dx.doi.org/10.1016/j.molcel.2016.11.003] [PMID: 28061334]
[3]
Yang, Y.; Bedford, M.T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer, 2013, 13(1), 37-50.
[http://dx.doi.org/10.1038/nrc3409] [PMID: 23235912]
[4]
Guccione, E.; Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 642-657.
[http://dx.doi.org/10.1038/s41580-019-0155-x] [PMID: 31350521]
[5]
Wu, Q.; Schapira, M.; Arrowsmith, C.H.; Barsyte-Lovejoy, D. Protein arginine methylation: From enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov., 2021, 20(7), 509-530.
[http://dx.doi.org/10.1038/s41573-021-00159-8] [PMID: 33742187]
[6]
Lin, W.J.; Gary, J.D.; Yang, M.C.; Clarke, S.; Herschman, H.R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem., 1996, 271(25), 15034-15044.
[http://dx.doi.org/10.1074/jbc.271.25.15034] [PMID: 8663146]
[7]
Krause, C.D.; Yang, Z.H.; Kim, Y.S.; Lee, J.H.; Cook, J.R.; Pestka, S. Protein arginine methyltransferases: Evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther., 2007, 113(1), 50-87.
[http://dx.doi.org/10.1016/j.pharmthera.2006.06.007] [PMID: 17005254]
[8]
Martens-Lobenhoffer, J.; Bode-Böger, S.M.; Clement, B. First detection and quantification of Nδ-monomethylarginine, a structural isomer of NG-monomethylarginine, in humans using MS3. Anal. Biochem., 2016, 493, 14-20.
[http://dx.doi.org/10.1016/j.ab.2015.10.001] [PMID: 26464121]
[9]
Meyer, R.; Wolf, S.S.; Obendorf, M. PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J. Steroid Biochem. Mol. Biol., 2007, 107(1-2), 1-14.
[http://dx.doi.org/10.1016/j.jsbmb.2007.05.006] [PMID: 17587566]
[10]
Zhong, J.; Cao, R.X.; Zu, X.Y.; Hong, T.; Yang, J.; Liu, L.; Xiao, X.H.; Ding, W.J.; Zhao, Q.; Liu, J.H.; Wen, G.B. Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma. FEBS J., 2012, 279(2), 316-335.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08426.x] [PMID: 22093364]
[11]
Katsanis, N.; Yaspo, M.L.; Fisher, E.M.C. Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm. Genome, 1997, 8(7), 526-529.
[http://dx.doi.org/10.1007/s003359900491] [PMID: 9196002]
[12]
Lakowski, T.M.; Frankel, A. Kinetic analysis of human protein arginine N-methyltransferase 2: Formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem. J., 2009, 421(2), 253-261.
[http://dx.doi.org/10.1042/BJ20090268] [PMID: 19405910]
[13]
Zhao, C.; Peng, H.; Jiang, N.; Liu, Y.; Chen, Y.; Liu, J.; Guo, Q.; Wu, Z.; Wang, L. A case of malonyl coenzyme A decarboxylase deficiency with novel mutations and literature review. Front Pediatr., 2023, 11, 1133134.
[http://dx.doi.org/10.3389/fped.2023.1133134] [PMID: 37144154]
[14]
Chen, C.P.; Wang, L.K.; Chern, S.R.; Wu, P.S.; Chen, S.W.; Wu, F.T.; Chen, Y.Y.; Town, D.D.; Wang, W. Prenatal diagnosis and molecular cytogenetic characterization of a pure ring chromosome 21 with a 4.657-Mb 21q22.3 deletion. Taiwan. J. Obstet. Gynecol., 2021, 60(1), 157-160.
[http://dx.doi.org/10.1016/j.tjog.2020.11.024] [PMID: 33494993]
[15]
Chen, C.P.; Wang, L.K.; Chern, S.R.; Wu, P.S.; Chen, S.W.; Wu, F.T.; Lee, C.C.; Chen, L.F.; Wang, W. Prenatal diagnosis and molecular cytogenetic characterization of mosaic ring chromosome 21 associated with low PAPP-A and low PlGF in the first-trimester maternal serum screening. Taiwan. J. Obstet. Gynecol., 2022, 61(2), 359-363.
[http://dx.doi.org/10.1016/j.tjog.2022.02.029] [PMID: 35361402]
[16]
Grypari, I.M.; Pappa, I.; Papastergiou, T.; Zolota, V.; Bravou, V.; Melachrinou, M.; Megalooikonomou, V.; Tzelepi, V. Elucidating the role of PRMTs in prostate cancer using open access databases and a patient cohort dataset. Histol. Histopathol., 2023, 38(3), 287-302.
[PMID: 36082942]
[17]
Oh, T.G.; Bailey, P.; Dray, E.; Smith, A.G.; Goode, J.; Eriksson, N.; Funder, J.W.; Fuller, P.J.; Simpson, E.R.; Tilley, W.D.; Leedman, P.J.; Clarke, C.L.; Grimmond, S.; Dowhan, D.H.; Muscat, G.E.O. PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Mol. Endocrinol., 2014, 28(7), 1166-1185.
[http://dx.doi.org/10.1210/me.2013-1403] [PMID: 24911119]
[18]
Zhong, J.; Cao, R.X.; Liu, J.H.; Liu, Y.B.; Wang, J.; Liu, L.P.; Chen, Y.J.; Yang, J.; Zhang, Q.H.; Wu, Y.; Ding, W.J.; Hong, T.; Xiao, X.H.; Zu, X.Y.; Wen, G.B. Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene, 2014, 33(48), 5546-5558.
[http://dx.doi.org/10.1038/onc.2013.500] [PMID: 24292672]
[19]
Hu, G.; Yan, C.; Xie, P.; Cao, Y.; Shao, J.; Ge, J. PRMT2 accelerates tumorigenesis of hepatocellular carcinoma by activating Bcl2 via histone H3R8 methylation. Exp. Cell Res., 2020, 394(2), 112152.
[http://dx.doi.org/10.1016/j.yexcr.2020.112152] [PMID: 32574605]
[20]
Li, Z.; Chen, C.; Yong, H.; Jiang, L.; Wang, P.; Meng, S.; Chu, S.; Li, Z.; Guo, Q.; Zheng, J.; Bai, J.; Li, H. PRMT2 promotes RCC tumorigenesis and metastasis via enhancing WNT5A transcriptional expression. Cell Death Dis., 2023, 14(5), 322.
[http://dx.doi.org/10.1038/s41419-023-05837-6] [PMID: 37173306]
[21]
Dong, F.; Li, Q.; Yang, C.; Huo, D.; Wang, X.; Ai, C.; Kong, Y.; Sun, X.; Wang, W.; Zhou, Y.; Liu, X.; Li, W.; Gao, W.; Liu, W.; Kang, C.; Wu, X. PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat. Commun., 2018, 9(1), 4552.
[http://dx.doi.org/10.1038/s41467-018-06968-7] [PMID: 30382083]
[22]
Zeng, S.; Luo, J.; Quan, H.; Xiao, Y.; Liu, Y.; Lu, H.; Qin, X. Protein arginine methyltransferase 2 inhibits angiotensin II-induced proliferation and inflammation in vascular smooth muscle cells. BioMed. Res. Int., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/1547452] [PMID: 30186848]
[23]
Li, Y.; Zhou, S.; Chen, S.; Zhong, J.; Wen, G. PRMT2 inhibits the formation of foam cell induced by ox-LDL in RAW 264.7 macrophage involving ABCA1 mediated cholesterol efflux. Biochem. Biophys. Res. Commun., 2020, 524(1), 77-82.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.040] [PMID: 31980179]
[24]
Li, J.; Pan, X.; Ren, Z.; Li, B.; Liu, H.; Wu, C.; Dong, X.; de Vos, P.; Pan, L.L.; Sun, J. Protein arginine methyltransferase 2 (PRMT2) promotes dextran sulfate sodium-induced colitis by inhibiting the SOCS3 promoter via histone H3R8 asymmetric dimethylation. Br. J. Pharmacol., 2022, 179(1), 141-158.
[http://dx.doi.org/10.1111/bph.15695] [PMID: 34599829]
[25]
Vurusaner, B.; Thevkar-Nages, P.; Kaur, R.; Giannarelli, C.; Garabedian, M.J.; Fisher, E.A. Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice. Sci. Rep., 2022, 12(1), 12031.
[http://dx.doi.org/10.1038/s41598-022-15349-6] [PMID: 35835907]
[26]
Bedford, M.T.; Frankel, A.; Yaffe, M.B.; Clarke, S.; Leder, P.; Richard, S. Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem., 2000, 275(21), 16030-16036.
[http://dx.doi.org/10.1074/jbc.M909368199] [PMID: 10748127]
[27]
Strahl, B.D.; Briggs, S.D.; Brame, C.J.; Caldwell, J.A.; Koh, S.S.; Ma, H.; Cook, R.G.; Shabanowitz, J.; Hunt, D.F.; Stallcup, M.R.; Allis, C.D. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol., 2001, 11(12), 996-1000.
[http://dx.doi.org/10.1016/S0960-9822(01)00294-9] [PMID: 11448779]
[28]
Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857.
[http://dx.doi.org/10.1126/science.1060781] [PMID: 11387442]
[29]
Boisvert, F.M.; Rhie, A.; Richard, S.; Doherty, A.J. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle, 2005, 4(12), 1834-1841.
[http://dx.doi.org/10.4161/cc.4.12.2250] [PMID: 16294045]
[30]
Passos, D.O.; Bressan, G.C.; Nery, F.C.; Kobarg, J. Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J., 2006, 273(17), 3946-3961.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05399.x] [PMID: 16879614]
[31]
Yamagata, K.; Daitoku, H.; Takahashi, Y.; Namiki, K.; Hisatake, K.; Kako, K.; Mukai, H.; Kasuya, Y.; Fukamizu, A. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell, 2008, 32(2), 221-231.
[http://dx.doi.org/10.1016/j.molcel.2008.09.013] [PMID: 18951090]
[32]
Cho, J-H.; Lee, M-K.; Yoon, K.W.; Lee, J.; Cho, S-G.; Choi, E-J. Arginine methylation-dependent regulation of ASK1 signaling by PRMT1. Cell Death Differ., 2012, 19(5), 859-870.
[http://dx.doi.org/10.1038/cdd.2011.168] [PMID: 22095282]
[33]
Yu, Z.; Vogel, G.; Coulombe, Y.; Dubeau, D.; Spehalski, E.; Hébert, J.; Ferguson, D.O.; Masson, J.Y.; Richard, S. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Res., 2012, 22(2), 305-320.
[http://dx.doi.org/10.1038/cr.2011.128] [PMID: 21826105]
[34]
Zhang, L.; Tran, N.T.; Su, H.; Wang, R.; Lu, Y.; Tang, H.; Aoyagi, S.; Guo, A.; Khodadadi-Jamayran, A.; Zhou, D.; Qian, K.; Hricik, T.; Côté, J.; Han, X.; Zhou, W.; Laha, S.; Abdel-Wahab, O.; Levine, R.L.; Raffel, G.; Liu, Y.; Chen, D.; Li, H.; Townes, T.; Wang, H.; Deng, H.; Zheng, Y.G.; Leslie, C.; Luo, M.; Zhao, X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife, 2015, 4, e07938.
[http://dx.doi.org/10.7554/eLife.07938] [PMID: 26575292]
[35]
Yoshimoto, T.; Boehm, M.; Olive, M.; Crook, M.F.; San, H.; Langenickel, T.; Nabel, E.G. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp. Cell Res., 2006, 312(11), 2040-2053.
[http://dx.doi.org/10.1016/j.yexcr.2006.03.001] [PMID: 16616919]
[36]
Blythe, S.A.; Cha, S.W.; Tadjuidje, E.; Heasman, J.; Klein, P.S. beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev. Cell, 2010, 19(2), 220-231.
[http://dx.doi.org/10.1016/j.devcel.2010.07.007] [PMID: 20708585]
[37]
Iwasaki, H.; Kovacic, J.C.; Olive, M.; Beers, J.K.; Yoshimoto, T.; Crook, M.F.; Tonelli, L.H.; Nabel, E.G. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ. Res., 2010, 107(8), 992-1001.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225326] [PMID: 20798359]
[38]
Qi, C.; Chang, J.; Zhu, Y.; Yeldandi, A.V.; Rao, S.M.; Zhu, Y.J. Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J. Biol. Chem., 2002, 277(32), 28624-28630.
[http://dx.doi.org/10.1074/jbc.M201053200] [PMID: 12039952]
[39]
Ganesh, L.; Yoshimoto, T.; Moorthy, N.C.; Akahata, W.; Boehm, M.; Nabel, E.G.; Nabel, G.J. Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol. Cell. Biol., 2006, 26(10), 3864-3874.
[http://dx.doi.org/10.1128/MCB.26.10.3864-3874.2006] [PMID: 16648481]
[40]
Kzhyshkowska, J.; Schütt, H.; Liss, M.; Kremmer, E.; Stauber, R.; Wolf, H.; Dobner, T. Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem. J., 2001, 358(2), 305-314.
[http://dx.doi.org/10.1042/bj3580305] [PMID: 11513728]
[41]
Swiercz, R.; Cheng, D.; Kim, D.; Bedford, M.T. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J. Biol. Chem., 2007, 282(23), 16917-16923.
[http://dx.doi.org/10.1074/jbc.M609778200] [PMID: 17439947]
[42]
Lai, Y.; Song, M.; Hakala, K.; Weintraub, S.T.; Shiio, Y. Proteomic dissection of the von Hippel-Lindau (VHL) interactome. J. Proteome Res., 2011, 10(11), 5175-5182.
[http://dx.doi.org/10.1021/pr200642c] [PMID: 21942715]
[43]
Verma, M.; Khan, M.I.K.; Kadumuri, R.V.; Chakrapani, B.; Awasthi, S.; Mahesh, A.; Govindaraju, G.; Chavali, P.L.; Rajavelu, A.; Chavali, S.; Dhayalan, A. PRMT3 interacts with ALDH1A1 and regulates gene-expression by inhibiting retinoic acid signaling. Commun. Biol., 2021, 4(1), 109.
[http://dx.doi.org/10.1038/s42003-020-01644-3] [PMID: 33495566]
[44]
Lei, Y.; Han, P.; Chen, Y.; Wang, H.; Wang, S.; Wang, M.; Liu, J.; Yan, W.; Tian, D.; Liu, M. Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin. Transl. Med., 2022, 12(1), e686.
[http://dx.doi.org/10.1002/ctm2.686] [PMID: 35090076]
[45]
Hsu, S.H.; Hung, W.C. Protein arginine methyltransferase 3: A crucial regulator in metabolic reprogramming and gene expression in cancers. Cancer Lett., 2023, 554, 216008.
[http://dx.doi.org/10.1016/j.canlet.2022.216008] [PMID: 36400311]
[46]
Shi, Y.; Niu, Y.; Yuan, Y.; Li, K.; Zhong, C.; Qiu, Z.; Li, K.; Lin, Z.; Yang, Z.; Zuo, D.; Qiu, J.; He, W.; Wang, C.; Liao, Y.; Wang, G.; Yuan, Y.; Li, B. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat. Commun., 2023, 14(1), 1932.
[http://dx.doi.org/10.1038/s41467-023-37542-5] [PMID: 37024475]
[47]
Zhi, R.; Wu, K.; Zhang, J.; Liu, H.; Niu, C.; Li, S.; Fu, L. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast. Cancer Sci., 2023, 114(5), 1912-1928.
[http://dx.doi.org/10.1111/cas.15724] [PMID: 36637351]
[48]
Zhu, J.; Li, X.; Cai, X.; Zhou, Z.; Liao, Q.; Liu, X.; Wang, J.; Xiao, W. Asymmetric arginine dimethylation of cytosolic RNA and DNA sensors by PRMT3 attenuates antiviral innate immunity. Proc. Natl. Acad. Sci., 2023, 120(36), e2214956120.
[http://dx.doi.org/10.1073/pnas.2214956120] [PMID: 37639603]
[49]
Schurter, B.T.; Koh, S.S.; Chen, D.; Bunick, G.J.; Harp, J.M.; Hanson, B.L.; Henschen-Edman, A.; Mackay, D.R.; Stallcup, M.R.; Aswad, D.W. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry, 2001, 40(19), 5747-5756.
[http://dx.doi.org/10.1021/bi002631b] [PMID: 11341840]
[50]
Xu, W.; Chen, H.; Du, K.; Asahara, H.; Tini, M.; Emerson, B.M.; Montminy, M.; Evans, R.M. A transcriptional switch mediated by cofactor methylation. Science, 2001, 294(5551), 2507-2511.
[http://dx.doi.org/10.1126/science.1065961] [PMID: 11701890]
[51]
Chevillard-Briet, M.; Trouche, D.; Vandel, L. Control of CBP co-activating activity by arginine methylation. EMBO J., 2002, 21(20), 5457-5466.
[http://dx.doi.org/10.1093/emboj/cdf548] [PMID: 12374746]
[52]
Li, H.; Park, S.; Kilburn, B.; Jelinek, M.A.; Henschen-Edman, A.; Aswad, D.W.; Stallcup, M.R.; Laird-Offringa, I.A. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem., 2002, 277(47), 44623-44630.
[http://dx.doi.org/10.1074/jbc.M206187200] [PMID: 12237300]
[53]
Feng, Q.; Yi, P.; Wong, J.; O’Malley, B.W. Signaling within a coactivator complex: Methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol., 2006, 26(21), 7846-7857.
[http://dx.doi.org/10.1128/MCB.00568-06] [PMID: 16923966]
[54]
Miao, F.; Li, S.; Chavez, V.; Lanting, L.; Natarajan, R. Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17. Mol. Endocrinol., 2006, 20(7), 1562-1573.
[http://dx.doi.org/10.1210/me.2005-0365] [PMID: 16497732]
[55]
Naeem, H.; Cheng, D.; Zhao, Q.; Underhill, C.; Tini, M.; Bedford, M.T.; Torchia, J. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol., 2007, 27(1), 120-134.
[http://dx.doi.org/10.1128/MCB.00815-06] [PMID: 17043108]
[56]
Ceschin, D.G.; Walia, M.; Wenk, S.S.; Duboé, C.; Gaudon, C.; Xiao, Y.; Fauquier, L.; Sankar, M.; Vandel, L.; Gronemeyer, H. Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev., 2011, 25(11), 1132-1146.
[http://dx.doi.org/10.1101/gad.619211] [PMID: 21632823]
[57]
Sims, R.J., III; Rojas, L.A.; Beck, D.; Bonasio, R.; Schüller, R.; Drury, W.J., III; Eick, D.; Reinberg, D. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science, 2011, 332(6025), 99-103.
[http://dx.doi.org/10.1126/science.1202663] [PMID: 21454787]
[58]
Zhong, Y.; Wang, Y.; Li, X.; Qin, H.; Yan, S.; Rao, C.; Fan, D.; Liu, D.; Deng, F.; Miao, Y.; Yang, L.; Huang, K. PRMT4 facilitates white adipose tissue browning and thermogenesis by methylating PPARγ. Diabetes, 2023, 72(8), 1095-1111.
[http://dx.doi.org/10.2337/db22-1016] [PMID: 37216643]
[59]
Meister, G.; Eggert, C.; Bühler, D.; Brahms, H.; Kambach, C.; Fischer, U. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol., 2001, 11(24), 1990-1994.
[http://dx.doi.org/10.1016/S0960-9822(01)00592-9] [PMID: 11747828]
[60]
Meister, G.; Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J., 2002, 21(21), 5853-5863.
[http://dx.doi.org/10.1093/emboj/cdf585] [PMID: 12411503]
[61]
Kwak, Y.T.; Guo, J.; Prajapati, S.; Park, K.J.; Surabhi, R.M.; Miller, B.; Gehrig, P.; Gaynor, R.B. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol. Cell, 2003, 11(4), 1055-1066.
[http://dx.doi.org/10.1016/S1097-2765(03)00101-1] [PMID: 12718890]
[62]
Gonsalvez, G.B.; Tian, L.; Ospina, J.K.; Boisvert, F.M.; Lamond, A.I.; Matera, A.G. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol., 2007, 178(5), 733-740.
[http://dx.doi.org/10.1083/jcb.200702147] [PMID: 17709427]
[63]
Jansson, M.; Durant, S.T.; Cho, E.C.; Sheahan, S.; Edelmann, M.; Kessler, B.; La Thangue, N.B. Arginine methylation regulates the p53 response. Nat. Cell Biol., 2008, 10(12), 1431-1439.
[http://dx.doi.org/10.1038/ncb1802] [PMID: 19011621]
[64]
Guo, S.; Bao, S. srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J. Biol. Chem., 2010, 285(45), 35133-35141.
[http://dx.doi.org/10.1074/jbc.M110.153429] [PMID: 20810653]
[65]
Zhou, Z.; Sun, X.; Zou, Z.; Sun, L.; Zhang, T.; Guo, S.; Wen, Y.; Liu, L.; Wang, Y.; Qin, J.; Li, L.; Gong, W.; Bao, S. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res., 2010, 20(9), 1023-1033.
[http://dx.doi.org/10.1038/cr.2010.56] [PMID: 20421892]
[66]
Andreu-Pérez, P.; Esteve-Puig, R.; de Torre-Minguela, C.; López-Fauqued, M.; Bech-Serra, J.J.; Tenbaum, S.; García-Trevijano, E.R.; Canals, F.; Merlino, G.; Ávila, M.A.; Recio, J.A. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci. Signal., 2011, 4(190), ra58.
[http://dx.doi.org/10.1126/scisignal.2001936] [PMID: 21917714]
[67]
Di Lorenzo, A.; Bedford, M.T. Histone arginine methylation. FEBS Lett., 2011, 585(13), 2024-2031.
[http://dx.doi.org/10.1016/j.febslet.2010.11.010] [PMID: 21074527]
[68]
Guderian, G.; Peter, C.; Wiesner, J.; Sickmann, A.; Schulze-Osthoff, K.; Fischer, U.; Grimmler, M. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J. Biol. Chem., 2011, 286(3), 1976-1986.
[http://dx.doi.org/10.1074/jbc.M110.148486] [PMID: 21081503]
[69]
Hsu, J.M.; Chen, C.T.; Chou, C.K.; Kuo, H.P.; Li, L.Y.; Lin, C.Y.; Lee, H.J.; Wang, Y.N.; Liu, M.; Liao, H.W.; Shi, B.; Lai, C.C.; Bedford, M.T.; Tsai, C.H.; Hung, M.C. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat. Cell Biol., 2011, 13(2), 174-181.
[http://dx.doi.org/10.1038/ncb2158] [PMID: 21258366]
[70]
Bandyopadhyay, S.; Harris, D.P.; Adams, G.N.; Lause, G.E.; McHugh, A.; Tillmaand, E.G.; Money, A.; Willard, B.; Fox, P.L.; DiCorleto, P.E. HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol. Cell. Biol., 2012, 32(7), 1202-1213.
[http://dx.doi.org/10.1128/MCB.05977-11] [PMID: 22269951]
[71]
Cho, E.C.; Zheng, S.; Munro, S.; Liu, G.; Carr, S.M.; Moehlenbrink, J.; Lu, Y.C.; Stimson, L.; Khan, O.; Konietzny, R.; McGouran, J.; Coutts, A.S.; Kessler, B.; Kerr, D.J.; Thangue, N.B.L. Arginine methylation controls growth regulation by E2F-1. EMBO J., 2012, 31(7), 1785-1797.
[http://dx.doi.org/10.1038/emboj.2012.17] [PMID: 22327218]
[72]
Yanling Zhao, D.; Gish, G.; Braunschweig, U.; Li, Y.; Ni, Z.; Schmitges, F.W.; Zhong, G.; Liu, K.; Li, W.; Moffat, J.; Vedadi, M.; Min, J.; Pawson, T.J.; Blencowe, B.J.; Greenblatt, J.F. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature, 2016, 529(7584), 48-53.
[http://dx.doi.org/10.1038/nature16469] [PMID: 26700805]
[73]
Kim, K.H.; Oprescu, S.N.; Snyder, M.M.; Kim, A.; Jia, Z.; Yue, F.; Kuang, S. PRMT5 mediates FoxO1 methylation and subcellular localization to regulate lipophagy in myogenic progenitors. Cell Rep., 2023, 42(11), 113329.
[http://dx.doi.org/10.1016/j.celrep.2023.113329] [PMID: 37883229]
[74]
Sun, Y.; Jin, X.; Meng, J.; Guo, F.; Chen, T.; Zhao, X.; Wu, H.; Ren, D. MST2 methylation by PRMT5 inhibits Hippo signaling and promotes pancreatic cancer progression. EMBO J., 2023, e114558.
[http://dx.doi.org/10.15252/embj.2023114558] [PMID: 37905571]
[75]
Miranda, T.B.; Webb, K.J.; Edberg, D.D.; Reeves, R.; Clarke, S. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a. Biochem. Biophys. Res. Commun., 2005, 336(3), 831-835.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.179] [PMID: 16157300]
[76]
El-Andaloussi, N.; Valovka, T.; Toueille, M.; Steinacher, R.; Focke, F.; Gehrig, P.; Covic, M.; Hassa, P.O.; Schär, P.; Hübscher, U.; Hottiger, M.O. Arginine methylation regulates DNA polymerase beta. Mol. Cell, 2006, 22(1), 51-62.
[http://dx.doi.org/10.1016/j.molcel.2006.02.013] [PMID: 16600869]
[77]
Guccione, E.; Bassi, C.; Casadio, F.; Martinato, F.; Cesaroni, M.; Schuchlautz, H.; Lüscher, B.; Amati, B. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature, 2007, 449(7164), 933-937.
[http://dx.doi.org/10.1038/nature06166] [PMID: 17898714]
[78]
Hyllus, D.; Stein, C.; Schnabel, K.; Schiltz, E.; Imhof, A.; Dou, Y.; Hsieh, J.; Bauer, U.M. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev., 2007, 21(24), 3369-3380.
[http://dx.doi.org/10.1101/gad.447007] [PMID: 18079182]
[79]
Iberg, A.N.; Espejo, A.; Cheng, D.; Kim, D.; Michaud-Levesque, J.; Richard, S.; Bedford, M.T. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem., 2008, 283(6), 3006-3010.
[http://dx.doi.org/10.1074/jbc.C700192200] [PMID: 18077460]
[80]
Huang, J.; Cardamone, M.D.; Johnson, H.E.; Neault, M.; Chan, M.; Floyd, Z.E.; Mallette, F.A.; Perissi, V. Exchange factor TBL1 and arginine methyltransferase PRMT6 cooperate in protecting G protein pathway suppressor 2 (GPS2) from proteasomal degradation. J. Biol. Chem., 2015, 290(31), 19044-19054.
[http://dx.doi.org/10.1074/jbc.M115.637660] [PMID: 26070566]
[81]
Yan, W.W.; Liang, Y.L.; Zhang, Q.X.; Wang, D.; Lei, M.Z.; Qu, J.; He, X.H.; Lei, Q.Y.; Wang, Y.P. Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis. EMBO Rep., 2018, 19(12), e46377.
[http://dx.doi.org/10.15252/embr.201846377] [PMID: 30420520]
[82]
Chen, Z.; Gan, J.; Wei, Z.; Zhang, M.; Du, Y.; Xu, C.; Zhao, H. The emerging role of PRMT6 in cancer. Front. Oncol., 2022, 12, 841381.
[http://dx.doi.org/10.3389/fonc.2022.841381] [PMID: 35311114]
[83]
Chen, Q.; Hu, Q.; Chen, Y.; Shen, N.; Zhang, N.; Li, A.; Li, L.; Li, J. PRMT6 methylation of STAT3 regulates tumor metastasis in breast cancer. Cell Death Dis., 2023, 14(10), 655.
[http://dx.doi.org/10.1038/s41419-023-06148-6] [PMID: 37813837]
[84]
Miranda, T.B.; Miranda, M.; Frankel, A.; Clarke, S. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem., 2004, 279(22), 22902-22907.
[http://dx.doi.org/10.1074/jbc.M312904200] [PMID: 15044439]
[85]
Lee, J.H.; Cook, J.R.; Yang, Z.H.; Mirochnitchenko, O.; Gunderson, S.I.; Felix, A.M.; Herth, N.; Hoffmann, R.; Pestka, S. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem., 2005, 280(5), 3656-3664.
[http://dx.doi.org/10.1074/jbc.M405295200] [PMID: 15494416]
[86]
Jelinic, P.; Stehle, J.C.; Shaw, P. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol., 2006, 4(11), e355.
[http://dx.doi.org/10.1371/journal.pbio.0040355] [PMID: 17048991]
[87]
Wang, H.; Straubinger, R.M.; Aletta, J.M.; Cao, J.; Duan, X.; Yu, H.; Qu, J. Accurate localization and relative quantification of arginine methylation using nanoflow liquid chromatography coupled to electron transfer dissociation and drbitrap mass spectrometry. J. Am. Soc. Mass Spectrom., 2009, 20(3), 507-519.
[http://dx.doi.org/10.1016/j.jasms.2008.11.008] [PMID: 19110445]
[88]
Karkhanis, V.; Wang, L.; Tae, S.; Hu, Y.J.; Imbalzano, A.N.; Sif, S. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. J. Biol. Chem., 2012, 287(35), 29801-29814.
[http://dx.doi.org/10.1074/jbc.M112.378281] [PMID: 22761421]
[89]
Migliori, V.; Müller, J.; Phalke, S.; Low, D.; Bezzi, M.; Mok, W.C.; Sahu, S.K.; Gunaratne, J.; Capasso, P.; Bassi, C.; Cecatiello, V.; De Marco, A.; Blackstock, W.; Kuznetsov, V.; Amati, B.; Mapelli, M.; Guccione, E. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat. Struct. Mol. Biol., 2012, 19(2), 136-144.
[http://dx.doi.org/10.1038/nsmb.2209] [PMID: 22231400]
[90]
Halabelian, L.; Barsyte-Lovejoy, D. Structure and function of protein arginine methyltransferase PRMT7. Life, 2021, 11(8), 768.
[http://dx.doi.org/10.3390/life11080768] [PMID: 34440512]
[91]
Nicot, C. PRMT7: A survive-or-die switch in cancer stem cells. Mol. Cancer, 2022, 21(1), 127.
[http://dx.doi.org/10.1186/s12943-022-01602-z] [PMID: 35689285]
[92]
Wang, X.; Xu, W.; Zhu, C.; Cheng, Y.; Qi, J. PRMT7 inhibits the proliferation and migration of gastric cancer cells by suppressing the PI3K/AKT pathway via PTEN. J. Cancer, 2023, 14(15), 2833-2844.
[http://dx.doi.org/10.7150/jca.88102] [PMID: 37781082]
[93]
Lee, J.; Sayegh, J.; Daniel, J.; Clarke, S.; Bedford, M.T. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J. Biol. Chem., 2005, 280(38), 32890-32896.
[http://dx.doi.org/10.1074/jbc.M506944200] [PMID: 16051612]
[94]
Sayegh, J.; Webb, K.; Cheng, D.; Bedford, M.T.; Clarke, S.G. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J. Biol. Chem., 2007, 282(50), 36444-36453.
[http://dx.doi.org/10.1074/jbc.M704650200] [PMID: 17925405]
[95]
Lee, W.C.; Lin, W.L.; Matsui, T.; Chen, E.S.W.; Wei, T.Y.W.; Lin, W.H.; Hu, H.; Zheng, Y.G.; Tsai, M.D.; Ho, M.C. Protein arginine methyltransferase 8: Tetrameric structure and protein substrate specificity. Biochemistry, 2015, 54(51), 7514-7523.
[http://dx.doi.org/10.1021/acs.biochem.5b00995] [PMID: 26529540]
[96]
Toma-Fukai, S.; Kim, J.D.; Park, K.E.; Kuwabara, N.; Shimizu, N.; Krayukhina, E.; Uchiyama, S.; Fukamizu, A.; Shimizu, T. Novel helical assembly in arginine methyltransferase 8. J. Mol. Biol., 2016, 428(6), 1197-1208.
[http://dx.doi.org/10.1016/j.jmb.2016.02.007] [PMID: 26876602]
[97]
Ishii, A.; Matsuba, Y.; Mihira, N.; Kamano, N.; Saito, T.; Muramatsu, S.; Yokosuka, M.; Saido, T.C.; Hashimoto, S. Tau-binding protein PRMT8 facilitates vacuole degeneration in the brain. J. Biochem., 2022, 172(4), 233-243.
[http://dx.doi.org/10.1093/jb/mvac058] [PMID: 35818334]
[98]
Zheng, K.; Zhang, Y.; Zhang, C.; Ye, W.; Ye, C.; Tan, X.; Xiong, Y. PRMT8 attenuates cerebral ischemia/reperfusion injury via modulating microglia activation and polarization to suppress neuroinflammation by upregulating Lin28a. ACS Chem. Neurosci., 2022, 13(7), 1096-1104.
[http://dx.doi.org/10.1021/acschemneuro.2c00096] [PMID: 35275616]
[99]
Zou, Z.; Liu, R.; Wang, Y.; Tan, H.; An, G.; Zhang, B.; Wang, Y.; Dong, D. Protein arginine methyltransferase 8 regulates ferroptosis and macrophage polarization in spinal cord injury via glial cell-derived neurotrophic factor. CNS Neurosci. Ther., 2023, 29(8), 2145-2161.
[http://dx.doi.org/10.1111/cns.14162] [PMID: 36914965]
[100]
Hadjikyriacou, A.; Yang, Y.; Espejo, A.; Bedford, M.T.; Clarke, S.G. Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem., 2015, 290(27), 16723-16743.
[http://dx.doi.org/10.1074/jbc.M115.659433] [PMID: 25979344]
[101]
Yang, Y.; Hadjikyriacou, A.; Xia, Z.; Gayatri, S.; Kim, D.; Zurita-Lopez, C.; Kelly, R.; Guo, A.; Li, W.; Clarke, S.G.; Bedford, M.T. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat. Commun., 2015, 6(1), 6428.
[http://dx.doi.org/10.1038/ncomms7428] [PMID: 25737013]
[102]
Bai, X.; Sui, C.; Liu, F.; Chen, T.; Zhang, L.; Zheng, Y.; Liu, B.; Gao, C. The protein arginine methyltransferase PRMT9 attenuates MAVS activation through arginine methylation. Nat. Commun., 2022, 13(1), 5016.
[http://dx.doi.org/10.1038/s41467-022-32628-y] [PMID: 36028484]
[103]
Deng, W.; Ai, J.; Zhang, W.; Zhou, Z.; Li, M.; Yan, L.; Zhang, L.; Huang, Z.; Wu, Z.; Ai, J.; Jiang, H. Arginine methylation of HSPA8 by PRMT9 inhibits ferroptosis to accelerate hepatitis B virus-associated hepatocellular carcinoma progression. J. Transl. Med., 2023, 21(1), 625.
[http://dx.doi.org/10.1186/s12967-023-04408-9] [PMID: 37715221]
[104]
Scott, H.S.; Antonarakis, S.E.; Lalioti, M.D.; Rossier, C.; Silver, P.A.; Henry, M.F. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics, 1998, 48(3), 330-340.
[http://dx.doi.org/10.1006/geno.1997.5190] [PMID: 9545638]
[105]
Wang, Y.C.; Li, C. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems. FEBS J., 2012, 279(6), 932-945.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08490.x] [PMID: 22251447]
[106]
Zhao, S.; Mo, L.X.; Li, W.T.; Jiang, L.L.; Meng, Y.Y.; Ou, J.F.; Liao, L.S.; Yan, Y.S.; Luo, X.M.; Feng, J.X. Arginine methyltransferases PRMT2 and PRMT3 are essential for biosynthesis of plant-polysaccharide-degrading enzymes in Penicillium oxalicum. PLoS Genet., 2023, 19(7), e1010867.
[http://dx.doi.org/10.1371/journal.pgen.1010867] [PMID: 37523410]
[107]
Cura, V.; Cavarelli, J. Structure, activity and function of the PRMT2 protein arginine methyltransferase. Life, 2021, 11(11), 1263.
[http://dx.doi.org/10.3390/life11111263] [PMID: 34833139]
[108]
Cura, V.; Marechal, N.; Troffer-Charlier, N.; Strub, J.M.; van Haren, M.J.; Martin, N.I.; Cianférani, S.; Bonnefond, L.; Cavarelli, J. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J., 2017, 284(1), 77-96.
[http://dx.doi.org/10.1111/febs.13953] [PMID: 27879050]
[109]
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39(4), 783-791.
[http://dx.doi.org/10.2307/2408678] [PMID: 28561359]
[110]
Saitou, N.; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[PMID: 3447015]
[111]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[112]
Jain, K.; Warmack, R.A.; Debler, E.W.; Hadjikyriacou, A.; Stavropoulos, P.; Clarke, S.G. Protein arginine methyltransferase product specificity is mediated by distinct active-site architectures. J. Biol. Chem., 2016, 291(35), 18299-18308.
[http://dx.doi.org/10.1074/jbc.M116.740399] [PMID: 27387499]
[113]
Harkiolaki, M.; Lewitzky, M.; Gilbert, R.J.; Jones, E.Y.; Bourette, R.P.; Mouchiroud, G.; Sondermann, H.; Moarefi, I.; Feller, S.M. Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. EMBO J., 2003, 22(11), 2571-2582.
[http://dx.doi.org/10.1093/emboj/cdg258] [PMID: 12773374]
[114]
Li, S.S.C. Specificity and versatility of SH3 and other proline-recognition domains: Structural basis and implications for cellular signal transduction. Biochem. J., 2005, 390(3), 641-653.
[http://dx.doi.org/10.1042/BJ20050411] [PMID: 16134966]
[115]
Espejo, A.; Côté, J.; Bednarek, A.; Richard, S.; Bedford, M.T. A protein-domain microarray identifies novel protein–protein interactions. Biochem. J., 2002, 367(3), 697-702.
[http://dx.doi.org/10.1042/bj20020860] [PMID: 12137563]
[116]
Hou, W.; Nemitz, S.; Schopper, S.; Nielsen, M.L.; Kessels, M.M.; Qualmann, B. Arginine methylation by PRMT2 controls the functions of the actin nucleator cobl. Dev. Cell, 2018, 45(2), 262-275.e8.
[http://dx.doi.org/10.1016/j.devcel.2018.03.007] [PMID: 29689199]
[117]
Vhuiyan, M.I.; Pak, M.L.; Park, M.A.; Thomas, D.; Lakowski, T.M.; Chalfant, C.E.; Frankel, A. PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J. Biochem., 2017, 162(1), mvw102.
[http://dx.doi.org/10.1093/jb/mvw102] [PMID: 28057797]
[118]
Rowley, M.J.; Prout-Holm, R.A.; Liu, R.W.; Hendrickson-Rebizant, T.; Ige, O.O.; Lakowski, T.M.; Frankel, A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J. Biol. Chem., 2023, 299(12), 105360.
[http://dx.doi.org/10.1016/j.jbc.2023.105360] [PMID: 37863263]
[119]
Price, O.M.; Hevel, J.M. Toward understanding molecular recognition between prmts and their substrates. Curr. Protein Pept. Sci., 2020, 21(7), 713-724.
[http://dx.doi.org/10.2174/1389203721666200124143145] [PMID: 31976831]
[120]
Kim, E.; Magen, A.; Ast, G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res., 2007, 35(1), 125-131.
[http://dx.doi.org/10.1093/nar/gkl924] [PMID: 17158149]
[121]
Lopez, A.J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet., 1998, 32(1), 279-305.
[http://dx.doi.org/10.1146/annurev.genet.32.1.279] [PMID: 9928482]
[122]
Gerhard, D.S.; Wagner, L.; Feingold, E.A.; Shenmen, C.M.; Grouse, L.H.; Schuler, G.; Klein, S.L.; Old, S.; Rasooly, R.; Good, P.; Guyer, M.; Peck, A.M.; Derge, J.G.; Lipman, D.; Collins, F.S.; Jang, W.; Sherry, S.; Feolo, M.; Misquitta, L.; Lee, E.; Rotmistrovsky, K.; Greenhut, S.F.; Schaefer, C.F.; Buetow, K.; Bonner, T.I.; Haussler, D.; Kent, J.; Kiekhaus, M.; Furey, T.; Brent, M.; Prange, C.; Schreiber, K.; Shapiro, N.; Bhat, N.K.; Hopkins, R.F.; Hsie, F.; Driscoll, T.; Soares, M.B.; Casavant, T.L.; Scheetz, T.E.; Brown-stein, M.J.; Usdin, T.B.; Toshiyuki, S.; Carninci, P.; Piao, Y.; Dudekula, D.B.; Ko, M.S.; Kawakami, K.; Suzuki, Y.; Sugano, S.; Gruber, C.E.; Smith, M.R.; Simmons, B.; Moore, T.; Waterman, R.; Johnson, S.L.; Ruan, Y.; Wei, C.L.; Mathavan, S.; Gunaratne, P.H.; Wu, J.; Garcia, A.M.; Hulyk, S.W.; Fuh, E.; Yuan, Y.; Sneed, A.; Kowis, C.; Hodgson, A.; Muzny, D.M.; McPherson, J.; Gibbs, R.A.; Fahey, J.; Helton, E.; Ketteman, M.; Madan, A.; Rodrigues, S.; Sanchez, A.; Whiting, M.; Madari, A.; Young, A.C.; Wetherby, K.D.; Granite, S.J.; Kwong, P.N.; Brinkley, C.P.; Pearson, R.L.; Bouffard, G.G.; Blakesly, R.W.; Green, E.D.; Dickson, M.C.; Rodriguez, A.C.; Grimwood, J.; Schmutz, J.; Myers, R.M.; Butterfield, Y.S.; Griffith, M.; Griffith, O.L.; Krzywinski, M.I.; Liao, N.; Morin, R.; Palmquist, D.; Petrescu, A.S.; Skalska, U.; Smailus, D.E.; Stott, J.M.; Schnerch, A.; Schein, J.E.; Jones, S.J.; Holt, R.A.; Baross, A.; Marra, M.A.; Clifton, S.; Makowski, K.A.; Bosak, S.; Malek, J. The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res., 2004, 14(10b), 2121-2127.
[http://dx.doi.org/10.1101/gr.2596504] [PMID: 15489334]
[123]
Yu, W.; Andersson, B.; Worley, K.C.; Muzny, D.M.; Ding, Y.; Liu, W.; Ricafrente, J.Y.; Wentland, M.A.; Lennon, G.; Gibbs, R.A. Large-scale concatenation cDNA sequencing. Genome Res., 1997, 7(4), 353-358.
[http://dx.doi.org/10.1101/gr.7.4.353] [PMID: 9110174]
[124]
Zhong, J.; Cao, R.X.; Hong, T.; Yang, J.; Zu, X.Y.; Xiao, X.H.; Liu, J.H.; Wen, G.B. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene, 2011, 487(1), 1-9.
[http://dx.doi.org/10.1016/j.gene.2011.06.022] [PMID: 21820040]
[125]
Zhong, J.; Chen, Y.J.; Chen, L.; Shen, Y.Y.; Zhang, Q.H.; Yang, J.; Cao, R.X.; Zu, X.Y.; Wen, G.B. PRMT2β, a C-terminal splice variant of PRMT2, inhibits the growth of breast cancer cells. Oncol. Rep., 2017, 38(2), 1303-1311.
[http://dx.doi.org/10.3892/or.2017.5786] [PMID: 28677794]
[126]
Li, Z.; Zhai, M.; Wang, H.; Chen, L.; Wang, L.; Ru, C.; Song, A.; Liu, X. Identification of splice variants, expression analysis and single nucleotide polymorphisms of the PRMT2 gene in dairy cattle. Gene, 2014, 539(1), 37-43.
[http://dx.doi.org/10.1016/j.gene.2014.01.065] [PMID: 24502989]
[127]
Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene, 2006, 25(38), 5220-5227.
[http://dx.doi.org/10.1038/sj.onc.1209615] [PMID: 16936740]
[128]
Frisone, P.; Pradella, D.; Di Matteo, A.; Belloni, E.; Ghigna, C.; Paronetto, M.P. SAM68: Signal transduction and RNA metabolism in human cancer. BioMed Res. Int., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/528954] [PMID: 26273626]
[129]
Fulton, M.D.; Cao, M.; Ho, M.C.; Zhao, X.; Zheng, Y.G. The macromolecular complexes of histones affect protein arginine methyltransferase activities. J. Biol. Chem., 2021, 297(4), 101123.
[http://dx.doi.org/10.1016/j.jbc.2021.101123] [PMID: 34492270]
[130]
Pak, M.L.; Lakowski, T.M.; Thomas, D.; Vhuiyan, M.I.; Hüsecken, K.; Frankel, A. A protein arginine N-methyltransferase 1 (PRMT1) and 2 heteromeric interaction increases PRMT1 enzymatic activity. Biochemistry, 2011, 50(38), 8226-8240.
[http://dx.doi.org/10.1021/bi200644c] [PMID: 21851090]
[131]
Hu, H.; Sun, S.C. Ubiquitin signaling in immune responses. Cell Res., 2016, 26(4), 457-483.
[http://dx.doi.org/10.1038/cr.2016.40] [PMID: 27012466]
[132]
Zhang, Q.; Cao, X. Epigenetic regulation of the innate immune response to infection. Nat. Rev. Immunol., 2019, 19(7), 417-432.
[http://dx.doi.org/10.1038/s41577-019-0151-6] [PMID: 30918351]
[133]
Wang, J.; Hua, H.; Wang, F.; Yang, S.; Zhou, Q.; Wu, X.; Feng, D.; Peng, H. Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway. Mol. Immunol., 2021, 139, 202-210.
[http://dx.doi.org/10.1016/j.molimm.2021.08.014] [PMID: 34583098]
[134]
Takeda, K.; Akira, S. TLR signaling pathways. Semin. Immunol., 2004, 16(1), 3-9.
[http://dx.doi.org/10.1016/j.smim.2003.10.003] [PMID: 14751757]
[135]
Zhu, J.; Li, X.; Sun, X.; Zhou, Z.; Cai, X.; Liu, X.; Wang, J.; Xiao, W. Zebrafish prmt2 attenuates antiviral innate immunity by targeting traf6. J. Immunol., 2021, 207(10), 2570-2580.
[http://dx.doi.org/10.4049/jimmunol.2100627] [PMID: 34654690]
[136]
Ahuja, R.; Pinyol, R.; Reichenbach, N.; Custer, L.; Klingensmith, J.; Kessels, M.M.; Qualmann, B. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell, 2007, 131(2), 337-350.
[http://dx.doi.org/10.1016/j.cell.2007.08.030] [PMID: 17956734]
[137]
Liu, L.; Lin, B.; Yin, S.; Ball, L.E.; Delaney, J.R.; Long, D.T.; Gan, W. Arginine methylation of BRD4 by PRMT2/4 governs transcription and DNA repair. Sci. Adv., 2022, 8(49), eadd8928.
[http://dx.doi.org/10.1126/sciadv.add8928] [PMID: 36475791]
[138]
Smith, E.; Zhou, W.; Shindiapina, P.; Sif, S.; Li, C.; Baiocchi, R.A. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin. Ther. Targets, 2018, 22(6), 527-545.
[http://dx.doi.org/10.1080/14728222.2018.1474203] [PMID: 29781349]
[139]
Shen, Y.; Zhong, J.; Liu, J.; Liu, K.; Zhao, J.; Xu, T.; Zeng, T.; Li, Z.; Chen, Y.; Ding, W.; Wen, G.; Zu, X.; Cao, R. Protein arginine N-methyltransferase 2 reverses tamoxifen resistance in breast cancer cells through suppression of ER-α36. Oncol. Rep., 2018, 39(6), 2604-2612.
[PMID: 29620287]
[140]
Chen, Y.; Dai, X.; Yao, Y.; Wang, J.; Yang, X.; Zhang, Y.; Yang, J.; Cao, R.; Wen, G.; Zhong, J. PRMT2β suppresses autophagy and glycolysis pathway in human breast cancer MCF-7 cell lines. Acta Biochim. Biophys. Sin., 2019, 51(3), 335-337.
[http://dx.doi.org/10.1093/abbs/gmz006] [PMID: 30883646]
[141]
Bednarz-Misa, I.; Fleszar, M.G.; Fortuna, P.; Lewandowski, Ł.; Mierzchała-Pasierb, M.; Diakowska, D.; Krzystek-Korpacka, M. Altered L-arginine metabolic pathways in gastric cancer: Potential therapeutic targets and biomarkers. Biomolecules, 2021, 11(8), 1086.
[http://dx.doi.org/10.3390/biom11081086] [PMID: 34439753]
[142]
Dalloneau, E.; Lopes Pereira, P.; Brault, V.; Nabel, E.G.; Hérault, Y. Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages. J. Immunol., 2011, 187(9), 4826-4834.
[http://dx.doi.org/10.4049/jimmunol.1101087] [PMID: 21957146]
[143]
Lundstrom, K. Epigenetics: New possibilities for drug discovery. Future Med. Chem., 2017, 9(5), 437-441.
[http://dx.doi.org/10.4155/fmc-2017-0015] [PMID: 28362126]
[144]
Hwang, J.W.; Cho, Y.; Bae, G.U.; Kim, S.N.; Kim, Y.K. Protein arginine methyltransferases: Promising targets for cancer therapy. Exp. Mol. Med., 2021, 53(5), 788-808.
[http://dx.doi.org/10.1038/s12276-021-00613-y] [PMID: 34006904]
[145]
Li, X.; Wang, C.; Jiang, H.; Luo, C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat., 2019, 29(2), 97-114.
[146]
Tewary, S.K.; Zheng, Y.G.; Ho, M.C. Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci., 2019, 76(15), 2917-2932.
[http://dx.doi.org/10.1007/s00018-019-03145-x] [PMID: 31123777]
[147]
van Haren, M.; van Ufford, L.Q.; Moret, E.E.; Martin, N.I. Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites. Org. Biomol. Chem., 2015, 13(2), 549-560.
[http://dx.doi.org/10.1039/C4OB01734J] [PMID: 25380215]
[148]
Bonday, Z.Q.; Cortez, G.S.; Grogan, M.J.; Antonysamy, S.; Weichert, K.; Bocchinfuso, W.P.; Li, F.; Kennedy, S.; Li, B.; Mader, M.M.; Arrowsmith, C.H.; Brown, P.J.; Eram, M.S.; Szewczyk, M.M.; Barsyte-Lovejoy, D.; Vedadi, M.; Guccione, E.; Campbell, R.M. LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med. Chem. Lett., 2018, 9(7), 612-617.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00014] [PMID: 30034588]
[149]
Mitchell, L.H.; Drew, A.E.; Ribich, S.A.; Rioux, N.; Swinger, K.K.; Jacques, S.L.; Lingaraj, T.; Boriack-Sjodin, P.A.; Waters, N.J.; Wigle, T.J.; Moradei, O.; Jin, L.; Riera, T.; Porter-Scott, M.; Moyer, M.P.; Smith, J.J.; Chesworth, R.; Copeland, R.A. Aryl pyrazoles as potent inhibitors of arginine methyltransferases: Identification of the first PRMT6 tool compound. ACS Med. Chem. Lett., 2015, 6(6), 655-659.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00071] [PMID: 26101569]
[150]
Halby, L.; Marechal, N.; Pechalrieu, D.; Cura, V.; Franchini, D.M.; Faux, C.; Alby, F.; Troffer-Charlier, N.; Kudithipudi, S.; Jeltsch, A.; Aouadi, W.; Decroly, E.; Guillemot, J.C.; Page, P.; Ferroud, C.; Bonnefond, L.; Guianvarc’h, D.; Cavarelli, J.; Arimondo, P.B. Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1748), 20170072.
[http://dx.doi.org/10.1098/rstb.2017.0072] [PMID: 29685976]
[151]
Chan-Penebre, E.; Kuplast, K.G.; Majer, C.R.; Boriack-Sjodin, P.A.; Wigle, T.J.; Johnston, L.D.; Rioux, N.; Munchhof, M.J.; Jin, L.; Jacques, S.L.; West, K.A.; Lingaraj, T.; Stickland, K.; Ribich, S.A.; Raimondi, A.; Scott, M.P.; Waters, N.J.; Pollock, R.M.; Smith, J.J.; Barbash, O.; Pappalardi, M.; Ho, T.F.; Nurse, K.; Oza, K.P.; Gallagher, K.T.; Kruger, R.; Moyer, M.P.; Copeland, R.A.; Chesworth, R.; Duncan, K.W. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol., 2015, 11(6), 432-437.
[http://dx.doi.org/10.1038/nchembio.1810] [PMID: 25915199]
[152]
Siarheyeva, A.; Senisterra, G.; Allali-Hassani, A.; Dong, A.; Dobrovetsky, E.; Wasney, G.A.; Chau, I.; Marcellus, R.; Hajian, T.; Liu, F.; Korboukh, I.; Smil, D.; Bolshan, Y.; Min, J.; Wu, H.; Zeng, H.; Loppnau, P.; Poda, G.; Griffin, C.; Aman, A.; Brown, P.J.; Jin, J.; Al-awar, R.; Arrowsmith, C.H.; Schapira, M.; Vedadi, M. An allosteric inhibitor of protein arginine methyltransferase 3. Structure, 2012, 20(8), 1425-1435.
[http://dx.doi.org/10.1016/j.str.2012.06.001] [PMID: 22795084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy