Skip to main content

Advertisement

Log in

Tumor Necrosis Factor Alpha Inhibitors and Cardiovascular Risk in Rheumatoid Arthritis

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an increased risk of cardiovascular events, due to the complex interplay between traditional and disease-related risk factors. Chronic inflammation and persistent disease activity are the key determinants of this risk, but despite great improvement in the disease management and prognosis, cardiovascular events are still the main cause of morbidity and mortality in RA cohorts1. In the last decades, the advent of new biological and targeted-synthetic DMARDs was accompanied by an improvement in disease activity control, but the role of each class of drugs on CVD risk is still a matter a debate. Since their approval for RA treatment, tumor necrosis factor alpha (TNFα) inhibitors have been widely investigated to better understand their effects on cardiovascular outcomes. The hypothesis that the reduction of chronic inflammation with any treatment may reduce the cardiovascular risk has been recently confuted by the direct comparison of TNFα-inhibitors and JAK inhibitors in patients with RA and coexisting risk factors for cardiovascular disease. The aim of this literature review is to add to the available evidence to analyze the relationship between TNFα-inhibitors and CVD risk in patients with RA and also provide some clinical scenarios to better explain the treatment dilemmas. In particular, while data on major cardiovascular events and thromboembolism seem consistent with an inflammation-mediated benefit with TNFα-inhibitors, there remain concerns about the use of this class of bDMARDs in patients with chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Løgstrup BB, Ellingsen T, Pedersen AB et al (2021) Cardiovascular risk and mortality in rheumatoid arthritis compared with diabetes mellitus and the general population. Rheumatology 60(3):1400–1409. https://doi.org/10.1093/RHEUMATOLOGY/KEAA374

    Article  PubMed  Google Scholar 

  2. van der Woude D, van der Helm-van Mil AHM (2018) Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol 32(2):174–187. https://doi.org/10.1016/J.BERH.2018.10.005

    Article  PubMed  Google Scholar 

  3. Conforti A, Di Cola I, Pavlych V et al (2021) Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun Rev 20(2):102735. https://doi.org/10.1016/J.AUTREV.2020.102735

    Article  PubMed  Google Scholar 

  4. Liao KP (2017) Cardiovascular disease in patients with rheumatoid arthritis. Trends Cardiovasc Med 27(2):136–140. https://doi.org/10.1016/J.TCM.2016.07.006

    Article  PubMed  Google Scholar 

  5. Maradit-Kremers H, Crowson CS, Nicola PJ et al (2005) Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum 52(2):402–411. https://doi.org/10.1002/ART.20853

    Article  PubMed  Google Scholar 

  6. Nicola PJ, Crowson CS, Maradit-Kremers H et al (2006) Contribution of congestive heart failure and ischemic heart disease to excess mortality in rheumatoid arthritis. Arthritis Rheum 54(1):60–67. https://doi.org/10.1002/ART.21560

    Article  PubMed  Google Scholar 

  7. Gabriel SE (2008) Cardiovascular morbidity and mortality in rheumatoid arthritis. Am J Med 121(10 SUPPL 1). https://doi.org/10.1016/J.AMJMED.2008.06.011

  8. Rheumatology A, Center I, Hansildaar R et al (2021) Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol 3(1):e58-e70. https://doi.org/10.1016/S2665-9913(20)30221-6

  9. Aviña-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D (2008) Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Care Res (Hoboken) 59(12):1690–1697. https://doi.org/10.1002/ART.24092

    Article  Google Scholar 

  10. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D (2012) Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis 71(9):1524–1529. https://doi.org/10.1136/ANNRHEUMDIS-2011-200726

    Article  PubMed  Google Scholar 

  11. Boyer JF, Gourraud PA, Cantagrel A, Davignon JL, Constantin A (2011) Traditional cardiovascular risk factors in rheumatoid arthritis: a meta-analysis. Joint Bone Spine 78(2):179–183. https://doi.org/10.1016/J.JBSPIN.2010.07.016

    Article  PubMed  Google Scholar 

  12. Skeoch S, Bruce IN (2015) Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nature Rev Rheumatol 11(7):390–400. https://doi.org/10.1038/nrrheum.2015.40

  13. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chia S, Qadan M, Newton R, Ludlam CA, Fox KAA, Newby DE (2003) Intra-arterial tumor necrosis factor-alpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arterioscler Thromb Vasc Biol 23(4):695–701. https://doi.org/10.1161/01.ATV.0000065195.22904.FA

    Article  CAS  PubMed  Google Scholar 

  15. Legein B, Temmerman L, Biessen EAL, Lutgens E (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70(20):3847–3869. https://doi.org/10.1007/S00018-013-1289-1

    Article  CAS  PubMed  Google Scholar 

  16. Hossain MB, Kopec JA, Atiquzzaman M, Karim ME (2022) The association between rheumatoid arthritis and cardiovascular disease among adults in the United States during 1999–2018, and age-related effect modification in relative and absolute scales. Ann Epidemiol 71:23–30. https://doi.org/10.1016/j.annepidem.2022.03.005

    Article  PubMed  Google Scholar 

  17. Fraenkel L, Bathon JM, England BR et al (2021) 2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 73(7):924–939. https://doi.org/10.1002/ACR.24596

    Article  PubMed  Google Scholar 

  18. Ytterberg SR, Bhatt DL, Mikuls TR et al (2022) Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med 386(4):316–326. https://doi.org/10.1056/NEJMOA2109927/SUPPL_FILE/NEJMOA2109927_DATA-SHARING.PDF

    Article  CAS  PubMed  Google Scholar 

  19. Nurmohamed MT (2009) Cardiovascular risk in rheumatoid arthritis. Autoimmun Rev 8(8):663–667. https://doi.org/10.1016/j.autrev.2009.02.015

    Article  PubMed  Google Scholar 

  20. Fakih O, Desmarets M, Martin B et al (2023) Impact of NSAIDs on 8-year cumulative incidence of major cardiovascular events in patients with ankylosing spondylitis: a nationwide study. Rheumatology (Oxford). Published online. https://doi.org/10.1093/RHEUMATOLOGY/KEAD072

  21. Roubille C, Richer V, Starnino T et al (2015) The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 74(3):480–489. https://doi.org/10.1136/ANNRHEUMDIS-2014-206624

    Article  CAS  PubMed  Google Scholar 

  22. Eder L, Thavaneswaran A, Chandran V, Cook R, Gladman DD (2015) Increased burden of inflammation over time is associated with the extent of atherosclerotic plaques in patients with psoriatic arthritis. Ann Rheum Dis 74(10):1830–1835. https://doi.org/10.1136/ANNRHEUMDIS-2014-205267

    Article  CAS  PubMed  Google Scholar 

  23. Heslinga M, Van Den Oever IAM, Jonker DL et al (2019) Suboptimal cardiovascular risk management in rheumatoid arthritis patients despite an explicit cardiovascular risk screening programme. Scand J Rheumatol 48(5):345–352. https://doi.org/10.1080/03009742.2019.1600718

    Article  CAS  PubMed  Google Scholar 

  24. Van Den Oever IAM, Heslinga M, Griep EN et al Cardiovascular risk management in rheumatoid arthritis patients still suboptimal: the Implementation of Cardiovascular Risk Management in Rheumatoid Arthritis project. https://doi.org/10.1093/rheumatology/kew497

  25. U-prevent. Accessed November 2, 2023. https://u-prevent.nl/accept-terms

  26. Raadsen R, Agca R, Boers M et al (2023) In RA patients without prevalent CVD, incident CVD is mainly associated with traditional risk factors: a 20-year follow-up in the CARRÉCARR´CARRÉ cohort study. Semin Arthritis Rheum 58:152132. https://doi.org/10.1016/j.semarthrit.2022.152132

    Article  CAS  PubMed  Google Scholar 

  27. Chang K, Yang SM, Kim SH, Han KH, Park SJ, Shin J (2014) Il. Smoking and rheumatoid arthritis. Int J Mol Sci 15(12):22279–22295. https://doi.org/10.3390/IJMS151222279

  28. Saevarsdottir S, Rezaei H, Geborek P et al (2015) Current smoking status is a strong predictor of radiographic progression in early rheumatoid arthritis: results from the SWEFOT trial. Ann Rheum Dis 74(8):1509–1514. https://doi.org/10.1136/ANNRHEUMDIS-2013-204601

    Article  PubMed  Google Scholar 

  29. Siasos G, Tsigkou V, Kokkou E et al (2014) Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches. Curr Med Chem 21(34):3936–3948. https://doi.org/10.2174/092986732134141015161539

    Article  CAS  PubMed  Google Scholar 

  30. Derksen VFAM, Huizinga TWJ, van der Woude D (2017) The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol 39(4):437–446. https://doi.org/10.1007/S00281-017-0627-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hyrich KL, Watson KD, Silman AJ, Symmons DPM (2006) Predictors of response to anti-TNF-alpha therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology (Oxford) 45(12):1558–1565. https://doi.org/10.1093/RHEUMATOLOGY/KEL149

    Article  CAS  PubMed  Google Scholar 

  32. Law-Wan J, Sparfel MA, Derolez S et al (2021) Predictors of response to TNF inhibitors in rheumatoid arthritis: an individual patient data pooled analysis of randomised controlled trials. Open 7:1882. https://doi.org/10.1136/rmdopen-2021-001882

    Article  Google Scholar 

  33. Messner B, Bernhard D (2014) Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 34(3):509–515. https://doi.org/10.1161/ATVBAHA.113.300156

    Article  CAS  PubMed  Google Scholar 

  34. Roelsgaard IK, Ikdahl E, Rollefstad S et al (2020) Smoking cessation is associated with lower disease activity and predicts cardiovascular risk reduction in rheumatoid arthritis patients. Rheumatology (Oxford) 59(8):1997–2004. https://doi.org/10.1093/RHEUMATOLOGY/KEZ557

    Article  CAS  PubMed  Google Scholar 

  35. Santo RCE, Fernandes KZ, Lora PS, Filippin LI, Xavier RM (2018) Prevalence of rheumatoid cachexia in rheumatoid arthritis: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 9(5):816–825. https://doi.org/10.1002/JCSM.12320

    Article  PubMed  PubMed Central  Google Scholar 

  36. Giles JT, Allison M, Blumenthal RS et al (2010) Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum 62(11):3173–3182. https://doi.org/10.1002/ART.27629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kremers HM, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE (2004) Prognostic importance of low body mass index in relation to cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum 50(11):3450–3457. https://doi.org/10.1002/ART.20612

    Article  PubMed  Google Scholar 

  38. Summers GD, Metsios GS, Stavropoulos-Kalinoglou A, Kitas GD (2010) Rheumatoid cachexia and cardiovascular disease. Nat Rev Rheumatol 6(8):445–451. https://doi.org/10.1038/NRRHEUM.2010.105

    Article  PubMed  Google Scholar 

  39. Lupoli R, Pizzicato P, Scalera A et al (2016) Impact of body weight on the achievement of minimal disease activity in patients with rheumatic diseases: a systematic review and meta-analysis. Arthritis Res Ther 18(1). https://doi.org/10.1186/S13075-016-1194-8

  40. Klaasen R, Wijbrandts CA, Gerlag DM, Tak PP (2011) Body mass index and clinical response to infliximab in rheumatoid arthritis. Arthritis Rheum 63(2):359–364. https://doi.org/10.1002/ART.30136

  41. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13(4):851–863. https://doi.org/10.5114/AOMS.2016.58928

  42. Hahn BH, Grossman J, Chen W, McMahon M (2007) The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: roles of inflammation and dyslipidemia. J Autoimmun 28(2–3):69–75. https://doi.org/10.1016/J.JAUT.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  43. Robertson J, Peters MJ, McInnes IB, Sattar N (2013) Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat Rev Rheumatol 9(9):513–523. https://doi.org/10.1038/NRRHEUM.2013.91

    Article  CAS  PubMed  Google Scholar 

  44. Berbée JFP, Havekes LM, Rensen PCN (2005) Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J Endotoxin Res 11(2):97–103. https://doi.org/10.1179/096805105X35215

    Article  CAS  PubMed  Google Scholar 

  45. Netea MG, Demacker PNM, Kullberg BJ et al (1996) Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections. J Clin Invest 97(6):1366–1372. https://doi.org/10.1172/JCI118556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Popa C, Netea MG, De Graaf J et al (2009) Circulating leptin and adiponectin concentrations during tumor necrosis factor blockade in patients with active rheumatoid arthritis. J Rheumatol 36(4):724–730. https://doi.org/10.3899/JRHEUM.080626

    Article  CAS  PubMed  Google Scholar 

  47. Myasoedova E, Crowson CS, Kremers HM et al (2011) Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis 70(3):482–487. https://doi.org/10.1136/ARD.2010.135871

    Article  CAS  PubMed  Google Scholar 

  48. Memon RA, Grunfeld C, Moser AH, Feingold KR (1993) Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology 132(5):2246–2253. https://doi.org/10.1210/ENDO.132.5.8477669

    Article  CAS  PubMed  Google Scholar 

  49. Schreyer SA, Peschon JJ, LeBoeuf RC (1996) Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 271(42):26174–26178. https://doi.org/10.1074/JBC.271.42.26174

    Article  CAS  PubMed  Google Scholar 

  50. Popa C, Netea MG, Van Riel PLCM, Van Der Meer JWM, Stalenhoef AFH (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48(4):751–752. https://doi.org/10.1194/JLR.R600021-JLR200

    Article  CAS  PubMed  Google Scholar 

  51. Ettinger WH, Varma VK, Sorci-Thomas M et al (1994) Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. Arterioscler Thromb 14(1):8–13. https://doi.org/10.1161/01.ATV.14.1.8

    Article  CAS  PubMed  Google Scholar 

  52. De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M (2001) The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem 276(33):30708–30716. https://doi.org/10.1074/JBC.M103270200

    Article  PubMed  Google Scholar 

  53. Memon RA, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR (2001) In vivo and in vitro regulation of sterol 27-hydroxylase in the liver during the acute phase response. potential role of hepatocyte nuclear factor-1. J Biol Chem 276(32):30118–30126. https://doi.org/10.1074/JBC.M102516200

  54. Feingold KR, Krauss RM, Pang M, Doerrler W, Jensen P, Grunfeld C (1993) The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J Clin Endocrinol Metab 76(6):1423–1427. https://doi.org/10.1210/JCEM.76.6.8501146

    Article  CAS  PubMed  Google Scholar 

  55. Ettinger WH, Miller LD, Albers JJ, Smith TK, Parks JS (1990) Lipopolysaccharide and tumor necrosis factor cause a fall in plasma concentration of lecithin: cholesterol acyltransferase in cynomolgus monkeys. J Lipid Res 31(6):1099–1107. https://doi.org/10.1016/S0022-2275(20)42750-6

    Article  CAS  PubMed  Google Scholar 

  56. Hardardóttir I, Kunitake ST, Moser AH et al (1994) Endotoxin and cytokines increase hepatic messenger RNA levels and serum concentrations of apolipoprotein J (clusterin) in Syrian hamsters. J Clin Invest 94(3):1304–1309. https://doi.org/10.1172/JCI117449

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hoffman JS, Benditt EP (1983) Plasma clearance kinetics of the amyloid-related high density lipoprotein apoprotein, serum amyloid protein (apoSAA), in the mouse. Evidence for rapid apoSAA clearance. J Clin Invest 71(4):926–934. https://doi.org/10.1172/JCI110847

  58. Feingold KR, Marshall M, Gulli R, Moser AH, Grunfeld C (1994) Effect of endotoxin and cytokines on lipoprotein lipase activity in mice. Arterioscler Thromb 14(11):1866–1872. https://doi.org/10.1161/01.ATV.14.11.1866

    Article  CAS  PubMed  Google Scholar 

  59. Feingold KR, Adi S, Staprans I et al (1990) Diet affects the mechanisms by which TNF stimulates hepatic triglyceride production. Am J Physiol 259(2 Pt 1). https://doi.org/10.1152/AJPENDO.1990.259.2.E177

  60. Behl T, Kaur I, Sehgal A et al (2020) The lipid paradox as a metabolic checkpoint and its therapeutic significance in ameliorating the associated cardiovascular risks in rheumatoid arthritis patients. Int J Mol Sci 21(24):1–27. https://doi.org/10.3390/IJMS21249505

    Article  Google Scholar 

  61. Fragoulis GE, Soulaidopoulos S, Sfikakis PP, Dimitroulas T, Kitas GD (2021) Effect of biologics on cardiovascular inflammation: mechanistic insights and risk reduction. Published online. https://doi.org/10.2147/JIR.S282691

    Article  Google Scholar 

  62. Luo Y, Ren X, Weng S, Yan C, Mao Q, Peng D (2021) Improvements in high-density lipoprotein quantity and quality contribute to the cardiovascular benefits by anti-tumor necrosis factor therapies in rheumatoid arthritis: a systemic review and meta-analysis. Front Cardiovasc Med 8:765749. https://doi.org/10.3389/FCVM.2021.765749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Daïen CI, Duny Y, Barnetche T, Daurès JP, Combe B, Morel J (2012) Effect of TNF inhibitors on lipid profile in rheumatoid arthritis: a systematic review with meta-analysis. Ann Rheum Dis 71(6):862–868. https://doi.org/10.1136/ANNRHEUMDIS-2011-201148

    Article  PubMed  Google Scholar 

  64. Diabetes mellitus risk factors in rheumatoid arthritis: a systematic review and meta-analysis - PubMed. Accessed July 20, 2023. https://pubmed.ncbi.nlm.nih.gov/25535750/

  65. Stavropoulos-Kalinoglou A, Metsios GS, Panoulas VF, Nightingale P, Koutedakis Y, Kitas GD (2012) Anti-tumour necrosis factor alpha therapy improves insulin sensitivity in normal-weight but not in obese patients with rheumatoid arthritis. Arthritis Res Ther 14(4):1–7. https://doi.org/10.1186/AR3900/FIGURES/1

    Article  Google Scholar 

  66. Antohe JL, Bili A, Sartorius JA et al (2012) Diabetes mellitus risk in rheumatoid arthritis: reduced incidence with anti-tumor necrosis factor α therapy. Arthritis Care Res (Hoboken) 64(2):215–221. https://doi.org/10.1002/ACR.20657

    Article  CAS  PubMed  Google Scholar 

  67. Leporini C, Russo E, D`Angelo S et al (2018) Insulin-sensiting effects of tumor necrosis factor alpha inhibitors in rheumatoid arthritis: a systematic review and meta-analysis. Rev Recent Clin Trials 13(3):184–191. https://doi.org/10.2174/1574887113666180314100340

  68. van den Oever IAM, Baniaamam M, Simsek S et al (2021) The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis. Rheumatol Int 41(2):319–328. https://doi.org/10.1007/S00296-020-04666-6

    Article  PubMed  Google Scholar 

  69. Bartoloni E, Alunno A, Gerli R (2018) Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases. Nat Rev Cardiol 15(1):33–44. https://doi.org/10.1038/NRCARDIO.2017.118

    Article  PubMed  Google Scholar 

  70. Midtbo H, Gerdts E, Kvien TK et al (2015) Disease activity and left ventricular structure in patients with rheumatoid arthritis. Rheumatology (Oxford) 54(3):511–519. https://doi.org/10.1093/RHEUMATOLOGY/KEU368

    Article  PubMed  Google Scholar 

  71. Argnani L, Zanetti A, Carrara G et al (2021) Rheumatoid arthritis and cardiovascular risk: retrospective matched-cohort analysis based on the RECORD study of the Italian Society for Rheumatology. Front Med (Lausanne). 8. https://doi.org/10.3389/FMED.2021.745601

  72. Urschel K, Cicha I (2015) TNF-α in the cardiovascular system: from physiology to therapy. Int J Interferon Cytokine Mediat Res 7:9–25. https://doi.org/10.2147/IJICMR.S64894

    Article  CAS  Google Scholar 

  73. Zhao Q, Hong D, Zhang Y, Sang Y, Yang Z, Zhang X (2015) Association between anti-TNF therapy for rheumatoid arthritis and hypertension: a meta-analysis of randomized controlled trials. Medicine 94(14). https://doi.org/10.1097/MD.0000000000000731

  74. Solomon DH, Kremer J, Curtis JR et al (2010) Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann Rheum Dis 69(11):1920–1925. https://doi.org/10.1136/ARD.2009.122226

    Article  PubMed  Google Scholar 

  75. Yang XZ, Chang Y, Wei W (2016) Endothelial dysfunction and inflammation: immunity in rheumatoid arthritis. Mediators Inflamm 2016. https://doi.org/10.1155/2016/6813016

  76. Mantel Ä, Holmqvist M, Nyberg F et al (2015) Risk factors for the rapid increase in risk of acute coronary events in patients with new-onset rheumatoid arthritis: a nested case-control study. Arthritis Rheumatol 67(11):2845–2854. https://doi.org/10.1002/ART.39267

    Article  CAS  PubMed  Google Scholar 

  77. Solomon DH, Reed GW, Kremer JM et al (2015) Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis and Rheumatology 67(6):1449–1455. https://doi.org/10.1002/ART.39098

    Article  CAS  PubMed  Google Scholar 

  78. Ferraz-Amaro I, Corrales A, Quevedo-Abeledo JC et al (2021) Disease activity influences the reclassification of rheumatoid arthritis into very high cardiovascular risk. Arthritis Res Ther 23(1). https://doi.org/10.1186/S13075-021-02542-7

  79. SCORE2 risk prediction algorithms (2021) new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 42(25):2439–2454. https://doi.org/10.1093/EURHEARTJ/EHAB309

    Article  Google Scholar 

  80. Erre GL, Cacciapaglia F, Sakellariou G et al (2022) C-reactive protein and 10-year cardiovascular risk in rheumatoid arthritis. Eur J Intern Med 104:49–54. https://doi.org/10.1016/J.EJIM.2022.07.001

    Article  CAS  PubMed  Google Scholar 

  81. Cambridge G, Acharya J, Cooper JA, Edwards JC, Humphries SE (2013) Antibodies to citrullinated peptides and risk of coronary heart disease. Atherosclerosis 228(1):243–246. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  82. López-Longo FJ, Oliver-Miñarro D, De La Torre I et al (2009) Association between anti-cyclic citrullinated peptide antibodies and ischemic heart disease in patients with rheumatoid arthritis. Arthritis Care Res (Hoboken) 61(4):419–424. https://doi.org/10.1002/ART.24390

    Article  Google Scholar 

  83. MacKey RH, Kuller LH, Deane KD et al (2015) Rheumatoid arthritis, anti-cyclic citrullinated peptide positivity, and cardiovascular disease risk in the women’s health initiative. Arthritis Rheumatol 67(9):2311–2322. https://doi.org/10.1002/ART.39198

    Article  CAS  PubMed  Google Scholar 

  84. Turesson C, McClelland RL, Christianson TJH, Matteson EL (2007) Severe extra-articular disease manifestations are associated with an increased risk of first ever cardiovascular events in patients with rheumatoid arthritis. Ann Rheum Dis 66(1):70–75. https://doi.org/10.1136/ARD.2006.052506

    Article  CAS  PubMed  Google Scholar 

  85. Mattey DL, Thomson W, Ollier WER et al (2007) Association of DRB1 shared epitope genotypes with early mortality in rheumatoid arthritis: results of eighteen years of followup from the early rheumatoid arthritis study. Arthritis Rheum 56(5):1408–1416. https://doi.org/10.1002/ART.22527

    Article  CAS  PubMed  Google Scholar 

  86. Farragher TM, Goodson NJ, Naseem H et al (2008) Association of the HLA-DRB1 gene with premature death, particularly from cardiovascular disease, in patients with rheumatoid arthritis and inflammatory polyarthritis. Arthritis Rheum 58(2):359–369. https://doi.org/10.1002/ART.23149

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sokka T, Häkkinen A, Kautiainen H et al (2008) Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Care Res (Hoboken) 59(1):42–50. https://doi.org/10.1002/ART.23255

    Article  Google Scholar 

  88. Doumen M, Pazmino S, Bertrand D, Westhovens R, Verschueren P (2023) Glucocorticoids in rheumatoid arthritis: balancing benefits and harm by leveraging the therapeutic window of opportunity. Joint Bone Spine 90(3):105491. https://doi.org/10.1016/J.JBSPIN.2022.105491

    Article  CAS  PubMed  Google Scholar 

  89. Aviña-zubieta JA, Abrahamowicz M, De vera MA et al (2013) Immediate and past cumulative effects of oral glucocorticoids on the risk of acute myocardial infarction in rheumatoid arthritis: a population-based study. Rheumatology (Oxford). 52(1):68–75. https://doi.org/10.1093/RHEUMATOLOGY/KES353

  90. Del Rincón I, Battafarano DF, Restrepo JF, Erikson JM, Escalante A (2014) Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis and Rheumatology 66(2):264–272. https://doi.org/10.1002/ART.38210

    Article  PubMed  Google Scholar 

  91. Ghosh R, Alajbegovic A, Gomes AV (2015) NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxid Med Cell Longev 2015. https://doi.org/10.1155/2015/536962

  92. González-Gay MA, González-Juanatey C (2017) Inflammation: NSAIDs and cardiovascular risk in arthritis. Nat Rev Cardiol 14(2):69–70. https://doi.org/10.1038/NRCARDIO.2016.208

    Article  PubMed  Google Scholar 

  93. Jacobsson LTH, Turesson C, Nilsson JÅ et al (2007) Treatment with TNF blockers and mortality risk in patients with rheumatoid arthritis. Ann Rheum Dis 66(5):670–675. https://doi.org/10.1136/ARD.2006.062497

    Article  PubMed  Google Scholar 

  94. Ljung L, Askling J, Rantapää-Dahlqvist S et al (2014) The risk of acute coronary syndrome in rheumatoid arthritis in relation to tumour necrosis factor inhibitors and the risk in the general population: a national cohort study. Arthritis Res Ther 16(3). https://doi.org/10.1186/AR4584

  95. Solomon DH, Curtis JR, Saag KG et al (2013) Cardiovascular risk in rheumatoid arthritis: comparing TNF-α blockade with nonbiologic DMARDs. Am J Med 126(8):730.e9-730.e17. https://doi.org/10.1016/J.AMJMED.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  96. Greenberg JD, Kremer JM, Curtis JR et al (2011) Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann Rheum Dis 70(4):576–582. https://doi.org/10.1136/ARD.2010.129916

    Article  PubMed  Google Scholar 

  97. Ozen G, Pedro S, Michaud K (2021) The risk of cardiovascular events associated with disease-modifying antirheumatic drugs in rheumatoid arthritis. J Rheumatol 48(5):648–655. https://doi.org/10.3899/JRHEUM.200265

    Article  PubMed  Google Scholar 

  98. Dixon WG, Watson KD, Lunt M et al (2007) Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum 56(9):2905–2912. https://doi.org/10.1002/ART.22809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Low ASL, Lunt M, Mercer LK et al (2016) Association between ischemic stroke and tumor necrosis factor inhibitor therapy in patients with rheumatoid arthritis. Arthritis Rheumatol 68(6):1337–1345. https://doi.org/10.1002/ART.39582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh S, Fumery M, Singh AG et al (2020) Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 72(4):561–576. https://doi.org/10.1002/ACR.23875

    Article  CAS  PubMed  Google Scholar 

  101. Giles JT, Sattar N, Gabriel S et al (2020) Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol 72(1):31–40. https://doi.org/10.1002/ART.41095

    Article  CAS  PubMed  Google Scholar 

  102. Kim SC, Solomon DH, Rogers JR et al (2017) Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study. Arthritis Rheumatol 69(6):1154–1164. https://doi.org/10.1002/ART.40084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang J, Xie F, Yun H et al (2016) Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann Rheum Dis 75(10):1813–1818. https://doi.org/10.1136/ANNRHEUMDIS-2015-207870

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Jin Y, Kang EH, Brill G, Desai RJ, Kim SC (2018) Cardiovascular (CV) risk after initiation of abatacept versus TNF inhibitors in rheumatoid arthritis patients with and without baseline CV disease. J Rheumatol 45(9):1240–1248. https://doi.org/10.3899/JRHEUM.170926

    Article  CAS  PubMed  Google Scholar 

  105. Queiroz MJ de, Castro CT de, Albuquerque FC et al (2022) Safety of biological therapy in patients with rheumatoid arthritis in administrative health databases: a systematic review and meta-analysis. Front Pharmacol 13. https://doi.org/10.3389/FPHAR.2022.928471

  106. Khosrow-Khavar F, Kim SC, Lee H, Lee SB, Desai RJ (2022) Tofacitinib and risk of cardiovascular outcomes: results from the Safety of Tofacitinib in Routine care patients with Rheumatoid Arthritis (STAR-RA) study. Ann Rheum Dis 81(6). https://doi.org/10.1136/ANNRHEUMDIS-2021-221915

  107. Salinas CA, Louder A, Polinski J et al (2023) Evaluation of VTE, MACE, and serious infections among patients with RA treated with baricitinib compared to TNFi: a multi-database study of patients in routine care using disease registries and claims databases. Rheumatol Ther 10(1):201–223. https://doi.org/10.1007/S40744-022-00505-1

    Article  PubMed  Google Scholar 

  108. Plein S, Erhayiem B, Fent G et al (2020) Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naïve, early rheumatoid arthritis. Ann Rheum Dis 79(11):1414–1422. https://doi.org/10.1136/ANNRHEUMDIS-2020-217653

    Article  CAS  PubMed  Google Scholar 

  109. Solomon DH, Giles JT, Liao KP et al (2023) Reducing cardiovascular risk with immunomodulators: a randomised active comparator trial among patients with rheumatoid arthritis. Ann Rheum Dis 82(3):324–330. https://doi.org/10.1136/ARD-2022-223302

    Article  CAS  PubMed  Google Scholar 

  110. van Sijl AM, Peters MJ, Knol DK et al (2011) Carotid intima media thickness in rheumatoid arthritis as compared to control subjects: a meta-analysis. Semin Arthritis Rheum 40(5):389–397. https://doi.org/10.1016/J.SEMARTHRIT.2010.06.006

    Article  PubMed  Google Scholar 

  111. Vassilopoulos D, Gravos A, Vlachopoulos C et al (2015) Adalimumab decreases aortic stiffness independently of its effect in disease activity in patients with rheumatoid arthritis. Clin Rheumatol 34(2):359–364. https://doi.org/10.1007/S10067-014-2718-8/METRICS

    Article  PubMed  Google Scholar 

  112. Abdulmajid B, Blanken AB, van Geel EH, Daams JG, Nurmohamed MT (2023) Effect of TNF inhibitors on arterial stiffness and intima media thickness in rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol 42(4). https://doi.org/10.1007/S10067-023-06505-Y

  113. McDonagh TA, Metra M, Adamo M et al (2022) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol (Engl Ed) 75(6):523. https://doi.org/10.1016/J.REC.2022.05.005

    Article  PubMed  Google Scholar 

  114. Roger VL (2013) Epidemiology of heart failure. Circ Res 113(6):646–659. https://doi.org/10.1161/CIRCRESAHA.113.300268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Federmann M, Hess OM (1994) Differentiation between systolic and diastolic dysfunction. Eur Heart J 15(suppl_D):2–6. https://doi.org/10.1093/EURHEARTJ/15.SUPPL_D.2

  116. Schau T, Gottwald M, Arbach O et al (2015) Increased prevalence of diastolic heart failure in patients with rheumatoid arthritis correlates with active disease, but not with treatment type. J Rheumatol 42(11):2029–2037. https://doi.org/10.3899/JRHEUM.141647

    Article  CAS  PubMed  Google Scholar 

  117. Kotyla PJ (2018) Bimodal function of anti-TNF treatment: shall we be concerned about anti-TNF treatment in patients with rheumatoid arthritis and heart failure?. Int J Mol Sci 19(6):1739. https://doi.org/10.3390/IJMS19061739

  118. Thielmann M, Dörge H, Martin C et al (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90(7):807–813. https://doi.org/10.1161/01.RES.0000014451.75415.36

    Article  CAS  PubMed  Google Scholar 

  119. Kleinbongard P, Schulz R, Heusch G (2011) TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16(1):49–69. https://doi.org/10.1007/S10741-010-9180-8

    Article  CAS  PubMed  Google Scholar 

  120. Lee CT, Chen LW, Chien MY (2017) Effects of exercise training on anabolic and catabolic markers in patients with chronic heart failure: a systematic review. Heart Fail Rev 22(6):723–730. https://doi.org/10.1007/S10741-017-9639-Y

    Article  CAS  PubMed  Google Scholar 

  121. Takeuchi T, Miyasaka N, Inui T et al (2017) High titers of both rheumatoid factor and anti-CCP antibodies at baseline in patients with rheumatoid arthritis are associated with increased circulating baseline TNF level, low drug levels, and reduced clinical responses: a post hoc analysis of the RISING study. Arthritis Res Ther 19(1). https://doi.org/10.1186/S13075-017-1401-2

  122. Miettinen KH, Lassus J, Harjola VP et al (2008) Prognostic role of pro- and anti-inflammatory cytokines and their polymorphisms in acute decompensated heart failure. Eur J Heart Fail 10(4):396–403. https://doi.org/10.1016/J.EJHEART.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  123. Defer N, Azroyan A, Pecker F, Pavoine C (2007) TNFR1 and TNFR2 signaling interplay in cardiac myocytes. J Biol Chem 282(49):35564–35573. https://doi.org/10.1074/JBC.M704003200

    Article  CAS  PubMed  Google Scholar 

  124. Hussain A, Tarahomi T, Singh L, Bollampally M, Heydari-Kamjani M, Kesselman MM (2021) Cardiovascular risk associated with TNF alpha inhibitor use in patients with rheumatoid arthritis. Cureus 13(9). https://doi.org/10.7759/CUREUS.17938

  125. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure. Circulation 107(25):3133–3140. https://doi.org/10.1161/01.CIR.0000077913.60364.D2

    Article  CAS  PubMed  Google Scholar 

  126. Mann DL, McMurray JJV, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure. Circulation 109(13):1594–1602. https://doi.org/10.1161/01.CIR.0000124490.27666.B2

    Article  CAS  PubMed  Google Scholar 

  127. Listing J, Strangfeld A, Kekow J et al (2008) Does tumor necrosis factor alpha inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum 58(3):667–677. https://doi.org/10.1002/ART.23281

    Article  CAS  PubMed  Google Scholar 

  128. Vizzardi E, Cavazzana I, Franceschini F et al (2016) Left ventricular function in rheumatoid arthritis during anti-TNF-α treatment: a speckle tracking prospective echocardiographic study. Monaldi Arch Chest Dis 84(1–2). https://doi.org/10.4081/MONALDI.2015.716

  129. Chen HK, Shao SC, Weng MY et al (2021) Risk of heart failure in rheumatoid arthritis patients treated with tumor necrosis factor-α inhibitors. Clin Pharmacol Ther 110(6):1595–1603. https://doi.org/10.1002/CPT.2415

    Article  CAS  PubMed  Google Scholar 

  130. Generali E, Carrara G, Kallikourdis M et al (2019) Risk of hospitalization for heart failure in rheumatoid arthritis patients treated with etanercept and abatacept. Rheumatol Int 39(2):239–243. https://doi.org/10.1007/S00296-018-4196-9

    Article  CAS  PubMed  Google Scholar 

  131. Chung WS, Peng CL, Lin CL et al (2014) Rheumatoid arthritis increases the risk of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study. Ann Rheum Dis 73(10):1774–1780. https://doi.org/10.1136/ANNRHEUMDIS-2013-203380

    Article  PubMed  Google Scholar 

  132. Ketfi C, Boutigny A, Mohamedi N et al (2021) Risk of venous thromboembolism in rheumatoid arthritis. Joint Bone Spine 88(3). https://doi.org/10.1016/J.JBSPIN.2020.105122

  133. Głuszek J, Wierzowiecka M, Niklas K, Niklas A (2020) The importance of homocysteine in the development of cardiovascular complications in patients with rheumatoid arthritis. Reumatologia 58(5):282–288. https://doi.org/10.5114/REUM.2020.99732

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gladd DA, Olech E (2009) Antiphospholipid antibodies in rheumatoid arthritis: identifying the dominoes. Curr Rheumatol Rep 11(1):43–51. https://doi.org/10.1007/S11926-009-0007-3

    Article  CAS  PubMed  Google Scholar 

  135. Kolarz B, Majdan M, Darmochwał-Kolarz DA, Dryglewska M (2014) Antiphospholipid antibodies during 6-month treatment with infliximab: a preliminary report. Med Sci Monit 20:1227–1231. https://doi.org/10.12659/MSM.890270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ingegnoli F, Fantini F, Favalli EG et al (2008) Inflammatory and prothrombotic biomarkers in patients with rheumatoid arthritis: effects of tumor necrosis factor-alpha blockade. J Autoimmun 31(2):175–179. https://doi.org/10.1016/J.JAUT.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  137. Davies R, Galloway JB, Watson KD et al (2011) Venous thrombotic events are not increased in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register. Ann Rheum Dis 70(10):1831–1834. https://doi.org/10.1136/ARD.2011.153536

    Article  CAS  PubMed  Google Scholar 

  138. Merkel PA, Jayne D, Yue H et al (2020) OP0012 TNF inhibitors are associated with a reduced risk of venous thromboembolism compared to CSDMARDS in RA patients. Ann Rheum Dis 79(Suppl 1):8–9. https://doi.org/10.1136/ANNRHEUMDIS-2020-EULAR.1505

    Article  Google Scholar 

  139. Desai RJ, Pawar A, Weinblatt ME, Kim SC (2019) Comparative risk of venous thromboembolism in rheumatoid arthritis patients receiving tofacitinib versus those receiving tumor necrosis factor inhibitors: an observational cohort study. Arthritis Rheumatol 71(6):892–900. https://doi.org/10.1002/ART.40798

    Article  CAS  PubMed  Google Scholar 

  140. Hoisnard L, Pina Vegas L, Dray-Spira R, Weill A, Zureik M, Sbidian E (2023) Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: a nationwide cohort study. Ann Rheum Dis 82(2):182–188. https://doi.org/10.1136/ARD-2022-222824

    Article  CAS  PubMed  Google Scholar 

  141. Sepriano A, Kerschbaumer A, Bergstra SA et al (2023) Safety of synthetic and biological DMARDs: a systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 82(1):107–118. https://doi.org/10.1136/ARD-2022-223357

    Article  CAS  PubMed  Google Scholar 

  142. Fleischmann R, Mysler E, Bessette L et al (2022) Long-term safety and efficacy of upadacitinib or adalimumab in patients with rheumatoid arthritis: results through 3 years from the SELECT-COMPARE study. RMD Open 8(1). https://doi.org/10.1136/RMDOPEN-2021-002012

  143. Taylor PC, Keystone EC, van der Heijde D et al (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376(7):652–662. https://doi.org/10.1056/NEJMOA1608345

    Article  CAS  PubMed  Google Scholar 

  144. Combe B, Kivitz A, Tanaka Y et al (2021) Filgotinib versus placebo or adalimumab in patients with rheumatoid arthritis and inadequate response to methotrexate: a phase III randomised clinical trial. Ann Rheum Dis 80(7):848–858. https://doi.org/10.1136/ANNRHEUMDIS-2020-219214

    Article  CAS  PubMed  Google Scholar 

  145. Meissner Y, Schäfer M, Albrecht K et al (2023) Original research: risk of major adverse cardiovascular events in patients with rheumatoid arthritis treated with conventional synthetic, biologic and targeted synthetic disease-modifying antirheumatic drugs: observational data from the German RABBIT register. RMD Open 9(4):e003489. https://doi.org/10.1136/RMDOPEN-2023-003489

    Article  PubMed  PubMed Central  Google Scholar 

  146. Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 145(18):E895–E1032. https://doi.org/10.1161/CIR.0000000000001063

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: NL, EB, CS, MEG and ST: literature evaluation and critical discussion: NL, EB, CS, MEG and ST; manuscript initial preparation: NL, EB.

Corresponding author

Correspondence to Carlo Selmi.

Ethics declarations

Ethics Approval

Not applicable.

Competing interests

Nicoletta Luciano received speakers fees (AbbVie, Eli-Lilly, Galapagos, Novartis) Carlo Selmi received consulting / speakers fee (AbbVie, Amgen, Alfa-Sigma, Biogen, Eli-Lilly, EUSA Pharma - Recordati, Galapagos, Janssen, Novartis, Pfizer, Recordati, SOBI) and research support (AbbVie, Amgen, Janssen, Novartis, Pfizer)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luciano, N., Barone, E., Timilsina, S. et al. Tumor Necrosis Factor Alpha Inhibitors and Cardiovascular Risk in Rheumatoid Arthritis. Clinic Rev Allerg Immunol 65, 403–419 (2023). https://doi.org/10.1007/s12016-023-08975-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-023-08975-z

Keywords

Navigation