Skip to main content
Log in

Numerical simulation analysis of flexible capacitive pressure sensors based on porous pyramidal microstructures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Flexible wearable pressure sensors with high sensitivity have a wide range of applications in the field of healthcare monitoring, e-skin technology, robotic limbs, and other human–machine interaction under low pressures. For very low pressures, a sensor with high sensitivity and bulky, expensive measuring equipment is required to obtain the output signal. The incorporation of a micro-pyramidal porous dielectric section can considerably enhance the sensitivity of the capacitance-based pressure sensor. This article has employed a finite element method-based three-dimensional simulation to assess the performance of the porous microstructured capacitive pressure sensor (pmcps). The numerical results revealed a high level of agreement with the experimental data. To simplify the design and fabrication of the sensor with optimal performance, the effects of parameters such as sensor dielectric constant, dielectric layer porosity, base length, tip width, height, and inter-microstructural spacing of porous micro-pyramids were investigated using the response surface methodology. Sensitivity analysis showed that the tip width of the micro-pyramid has the greatest effect on sensor sensitivity and the least effect on the initial capacitance. Finally, equations were proposed for predicting the initial capacitance and sensor sensitivity based on the geometric parameters of the porous micro-pyramid and intrinsic properties of the dielectric section using three-dimensional finite element simulation to facilitate the ability to predict the fabrication and design process of the pmcps and optimize its performance for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Zang, Y., Zhang, F., Di, C.A., Zhu, D.: Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horizons 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H

    Article  CAS  Google Scholar 

  2. Takaloo, S., Zand, M.M., Kalantar, M., & Rezayan, A.H. (2023). Detection of c-reactive protein using a flexible biosensor with improved bending life. J. Electrochem. Soc. 170(5), 057513. https://doi.org/10.1021/ACSAMI.6B05177/SUPPL_FILE/AM6B05177_SI_001.PDF

    Article  CAS  Google Scholar 

  3. Takaloo, S., Zand, M.M.: Wearable electrochemical flexible biosensors: with the focus on affinity biosensors. Sens. Bio-Sens. Res 32, 100403 (2021)

    Article  Google Scholar 

  4. Chang, W.-Y., Fang, T.-H., Yeh, S.-H., Lin, Y.-C.: Flexible electronics sensors for tactile multi-touching. Sensors 9(2), 1188–1203 (2009). https://doi.org/10.3390/S9021188

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y., et al.: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10), 9213–9222 (2013). https://doi.org/10.1021/NN403838Y/SUPPL_FILE/NN403838Y_SI_004.AVI

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, G., et al.: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. Lett. 14(6), 3208–3213 (2014). https://doi.org/10.1021/NL5005652/SUPPL_FILE/NL5005652_SI_005.AVI

    Article  ADS  CAS  Google Scholar 

  7. Tang, X., et al.: Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small 15(10), 1804559 (2019). https://doi.org/10.1002/SMLL.201804559

    Article  MathSciNet  Google Scholar 

  8. Ruth, S.R.A., et al.: Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater.Funct. Mater. 30(29), 1903100 (2020)

    Article  CAS  Google Scholar 

  9. Duan, Y., He, S., Wu, J., Su, B., Wang, Y.: Recent progress in flexible pressure sensor arrays. Nanomater 12(14), 2495 (2022). https://doi.org/10.3390/NANO12142495

    Article  CAS  Google Scholar 

  10. Kaiqiang, W., Xingyang, L.: Wearable pressure sensor for athletes’ full-range motion signal monitoring. Mater. Res. Express 7(10), 105003 (2020). https://doi.org/10.1088/2053-1591/ABBBCC

    Article  ADS  Google Scholar 

  11. Zhang, Y., et al.: Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun.Commun. 13(1), 1–12 (2022). https://doi.org/10.1038/s41467-022-29093-y

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Zhang, J.W., Zhang, Y., Li, Y.Y., Wang, P.: Textile-based flexible pressure sensors: a review. Polym. Rev.. Rev. 62(1), 65–94 (2021). https://doi.org/10.1080/15583724.2021.1901737

    Article  CAS  Google Scholar 

  13. Jung, S., et al.: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014). https://doi.org/10.1002/ADMA.201401364

    Article  CAS  PubMed  Google Scholar 

  14. Pizarro, F., Villavicencio, P., Yunge, D., Rodríguez, M., Hermosilla, G., Leiva, A.: Easy-to-build textile pressure sensor. Sensors 18(4), 1190 (2018). https://doi.org/10.3390/S18041190

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Xu, F., et al.: Recent developments for flexible pressure sensors: a review. Micromachines 9(11), 580 (2018). https://doi.org/10.3390/MI9110580

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee, J., et al.: Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015). https://doi.org/10.1002/ADMA.201500009

    Article  CAS  PubMed  Google Scholar 

  17. Yang, J., et al.: Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/ACSAMI.9B02049/SUPPL_FILE/AM9B02049_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  18. Ramuz, M., Tee, B.C.K., Tok, J.B.H., Bao, Z.: Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24(24), 3223–3227 (2012). https://doi.org/10.1002/ADMA.201200523

    Article  CAS  PubMed  Google Scholar 

  19. Matsouka, D., Vassiliadis, S., Bayramol, D.V.: Piezoelectric textile fibres for wearable energy harvesting systems. Mater. Res. Express 5(6), 065508 (2018). https://doi.org/10.1088/2053-1591/AAC928

    Article  ADS  Google Scholar 

  20. Li, J., Bao, R., Tao, J., Peng, Y., Pan, C.: Recent progress in flexible pressure sensor arrays: from design to applications. J. Mater. Chem. C 6(44), 11878–11892 (2018). https://doi.org/10.1039/C8TC02946F

    Article  CAS  Google Scholar 

  21. Lei, K.F., Lee, K.F., Lee, M.Y.: Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng.. Eng. 99, 1–5 (2012). https://doi.org/10.1016/J.MEE.2012.06.005

    Article  CAS  Google Scholar 

  22. He, Z., et al.: Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/ACSAMI.8B01050/SUPPL_FILE/AM8B01050_SI_001.PDF

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mannsfeld, S.C.B., et al.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Zhang, P., Zhang, J., Li, Y., Huang, L.: Flexible and high sensitive capacitive pressure sensor with microstructured electrode inspired by ginkgo leaf. J. Phys. D Appl. Phys. 54(46), 465401 (2021). https://doi.org/10.1088/1361-6463/AC1DDC

    Article  ADS  CAS  Google Scholar 

  25. Kwon, D., et al.: Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl. Mater. Interfaces 8(26), 16922–16931 (2016). https://doi.org/10.1021/ACSAMI.6B04225/SUPPL_FILE/AM6B04225_SI_004.AVI

    Article  CAS  PubMed  Google Scholar 

  26. Bijender, Kumar, A.: Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens. Bio-Sens. Res. 33, 100434 (2021). https://doi.org/10.1016/J.SBSR.2021.100434

    Article  Google Scholar 

  27. Ding, H., et al.: Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/AB091A

    Article  Google Scholar 

  28. Liu, M.Y., et al.: Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 87, 106181 (2021). https://doi.org/10.1016/J.NANOEN.2021.106181

    Article  CAS  Google Scholar 

  29. Li, R., et al.: Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators A Phys. 321, 112425 (2021). https://doi.org/10.1016/J.SNA.2020.112425

    Article  CAS  Google Scholar 

  30. Lee, B.M., Loh, K.J.: A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films. J. Mater. Sci. 50(7), 2973–2983 (2015). https://doi.org/10.1007/S10853-015-8862-Y

    Article  ADS  CAS  Google Scholar 

  31. Mu, C., et al.: Enhanced piezocapacitive effect in CaCu3Ti4O12-polydimethylsiloxane composited sponge for ultrasensitive flexible capacitive sensor. ACS Appl. Nano Mater. 1(1), 274–283 (2018). https://doi.org/10.1021/ACSANM.7B00144/SUPPL_FILE/AN7B00144_SI_004.AVI

    Article  CAS  Google Scholar 

  32. Wei, P., Guo, X., Qiu, X., Yu, D.: Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/AB3695

    Article  PubMed  Google Scholar 

  33. Kim, Y., Jang, S., Kang, B.J., Oh, J.H.: Fabrication of highly sensitive capacitive pressure sensors with electrospun polymer nanofibers. Appl. Phys. Lett.Lett. (2017). https://doi.org/10.1063/1.4998465/34686

    Article  Google Scholar 

  34. Javidi, R., Moghimi Zand, M. & Alizadeh Majd, S.: Designing wearable capacitive pressure sensors with arrangement of porous pyramidal microstructures. Micro and Nano Syst. Lett.11(1), 13 (2023)

    Article  ADS  Google Scholar 

  35. Deng, W., et al.: Microstructure-based interfacial tuning mechanism of capacitive pressure sensors for electronic skin. J. Sens. (2016). https://doi.org/10.1155/2016/2428305

    Article  Google Scholar 

  36. Jafarizadeh, B., Chowdhury, A.H., Khakpour, I., Pala, N., Wang, C.: Design rules for a wearable micro-fabricated piezo-resistive pressure sensor. Micromachines 13(6), 838 (2022). https://doi.org/10.3390/MI13060838

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, W., Sun, W., Xiao, W., Zhong, X., Wu, C., Guo, W.: Numerical simulation analysis of microstructure of dielectric layers in capacitive pressure sensors. IEEE Sens. J. 19(9), 3260–3266 (2019). https://doi.org/10.1109/JSEN.2019.2893336

    Article  ADS  CAS  Google Scholar 

  38. Huang, J., Tang, X., Wang, F., Wang, Z., Niu, Y., Wang, H.: Multi-hierarchical microstructures boosted linearity of flexible capacitive pressure sensor. Adv. Eng. Mater. 24(9), 2101767 (2022). https://doi.org/10.1002/ADEM.202101767

    Article  CAS  Google Scholar 

  39. Phothiphatcha, J., Puttapitukporn, T.: Determination of material parameters of PDMS material models by MATLAB. Eng. J. 25(4), 11–28 (2021). https://doi.org/10.4186/ej.2021.25.4.11

    Article  Google Scholar 

  40. Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng.. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998). https://doi.org/10.1016/S0045-7825(97)00339-3

    Article  ADS  Google Scholar 

  41. Ockuly, R.A., Weese, M.L., Smucker, B.J., Edwards, D.J., Chang, L.: Response surface experiments: a meta-analysis. Chemom. Intell. Lab. Syst.. Intell. Lab. Syst. 164, 64–75 (2017). https://doi.org/10.1016/J.CHEMOLAB.2017.03.009

    Article  CAS  Google Scholar 

  42. Khuri, A.I., Mukhopadhyay, S.: Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128–149 (2010). https://doi.org/10.1002/WICS.73

    Article  Google Scholar 

  43. Pereira, L.M.S., Milan, T.M., Tapia-Blácido, D.R.: Using response surface methodology (RSM) to optimize 2G bioethanol production: a review. Biomass Bioenerg.Bioenerg. 151, 106166 (2021). https://doi.org/10.1016/J.BIOMBIOE.2021.106166

    Article  CAS  Google Scholar 

  44. Singh, B., Kumar, R., Ahuja, N.: Optimizing drug delivery systems using systematic” design of experiments.” Part I: fundamental aspects. Crit. Rev. Ther. Drug Carr. Syst. 22(1), 27–105 (2005). https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V22.I1.20

    Article  CAS  Google Scholar 

  45. Yang, J.C., et al.: Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/ACSAMI.9B03261/SUPPL_FILE/AM9B03261_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y., Yang, J., Hou, X., et al.: Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13(1), 1317 (2022)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Reza Javidi involved in conceptualization, analysis, methodology, writing—original draft, and visualization. Mahdi Moghimi Zand involved in supervision, writing—review and editing, methodology, validation, project administration, and software. Sara Alizadeh Majd involved in methodology, writing—original draft, software, and validation.

Corresponding author

Correspondence to Mahdi Moghimi Zand.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest. This study does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidi, R., Moghimi Zand, M. & Alizadeh Majd, S. Numerical simulation analysis of flexible capacitive pressure sensors based on porous pyramidal microstructures. J Comput Electron 23, 108–121 (2024). https://doi.org/10.1007/s10825-023-02116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02116-7

Keywords

Navigation