Skip to main content
Log in

Electronic Structure and Optical Properties of the Adducts of Er3+ and Yb3+ Thenoyltrifluoracetonate with TPPO

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Adducts of Er3+ and Yb3+ tris-thenoyltrifluoroacetonate with triphenylphosphine oxide OP(C6H5)3 (TPPO) are studied by X-ray photoelectron spectroscopy, optical spectroscopy, and density functional quantum chemical simulations. The spatial structure, electronic levels, effective atomic charge distribution, and excited states are simulated. The main physicochemical characteristics are established from experimental photoelectronic and optical absorption spectra. The experimental data are interpreted using the obtained theoretical results. According to the calculations, all the excited states are caused by transitions to vacant π4*-MO states of the tta ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva Jr. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev., 2000, 196, 165. https://doi.org/10.1016/S0010-8545(99)00054-5

    Article  Google Scholar 

  2. S. V. Eliseeva, S. I. Troyanov, N. P. Kuzmina, O. V. Mirzov, and A. G. Vitukhnovsky. Synthesis, characterization and luminescence properties of europium(III) and terbium(III) complexes with 2-pyrazinecarboxylic acid: Crystal structure of [Eu(pyca)3(H2O)2]·6H2O. J. Alloys Compd., 2004, 374, 293. https://doi.org/10.1016/j.jallcom.2003.11.123

    Article  CAS  Google Scholar 

  3. N. P. Kuz′mina and S. V. Eliseeva. Photo and electroluminescence of lanthanide(III) complexes. Russ. J. Inorg. Chem., 2006, 51, 73. https://doi.org/10.1134/S0036023606010141

    Article  Google Scholar 

  4. V. V. Utochnikova, O. V. Kotova, E. M. Shchukina, S. V. Eliseeva, and N. P. Kuz′mina. Gas-phase synthesis of terbium and lutetium carboxylates. Russ. J. Inorg. Chem., 2008, 53, 1878. https://doi.org/10.1134/S0036023608120085

    Article  Google Scholar 

  5. B. V. Bukvetskii, I. V. Kalinovskay, A. N. Zadorozhnaya, and V. E. Karasev. Crystal and molecular structure and luminescence properties of the europium trifluoroacetate complex with dipyridyl. Russ. J. Inorg. Chem., 2008, 53, 598. https://doi.org/10.1134/S0036023608040207

    Article  Google Scholar 

  6. J. Vuojola, U. Lamminmäki, and T. Soukka. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors. Anal. Chem., 2009, 81, 5033. https://doi.org/10.1021/ac9005793

    Article  CAS  PubMed  Google Scholar 

  7. H. Xu, Y. Wei, B. Zhao, and W. Huang. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its EuIII complex. J. Rare Earths, 2010, 28, 666. https://doi.org/10.1016/S1002-0721(09)60175-7

    Article  Google Scholar 

  8. V. F. Shul′gin, S. V. Abkhairova, O. V. Konnik, S. B. Meshkova, Z. M. Topilova, M. A. Kiskin, and I. L. Eremenko. Synthesis, structure, and luminescent properties of lanthanide coordination compounds with 3-methyl-4-formyl-1-phenylpyrazol-5-one. Russ. J. Inorg. Chem., 2012, 57, 420. https://doi.org/10.1134/S0036023612030291

    Article  Google Scholar 

  9. I. A. Ibarra, T. W. Hesterberg, B. J. Holliday, V. M. Lynch, and S. M. Humphrey. Gas sorption and luminescence properties of a terbium(III)-phosphine oxide coordination material with two-dimensional pore topology. Dalton Trans., 2012, 41, 8003. https://doi.org/10.1039/c2dt30138e

    Article  CAS  PubMed  Google Scholar 

  10. K. Binnemans. Interpretation of europium(III) spectra. Coord. Chem. Rev., 2015, 295, 1. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  11. K. P. Zhuravlev, V. I. Tsaryuk, and V. A. Kudryashova. Photoluminescence of europium and terbium trifluoroacetylacetonates. Participation of LMCT state in processes of the energy transfer to Eu3+ ion. J. Fluor. Chem., 2018, 212, 137. https://doi.org/10.1016/j.jfluchem.2018.06.002

    Article  CAS  Google Scholar 

  12. S. G. Rachor, P. A. Cleaves, S. D. Robertson, and S. M. Mansell. NMR spectroscopic study of the adduct formation and reactivity of homoleptic rare earth amides with alkali metal benzyl compounds, and the crystal structures of [Li(TMEDA)2][Nd{N(SiMe3)2}3(CH2Ph)] and [{Li(TMP)}2{Li(Ph)}]2. J. Organomet. Chem., 2018, 657, 101. https://doi.org/10.1016/j.jorganchem.2017.10.022

    Article  CAS  Google Scholar 

  13. D. M. Lyubov, A. V. Cherkasov, G. K. Fukin, K. A. Lyssenko, E. A. Rychagova, S. Y. Ketkov, and A. A. Trifonov. Rare-earth metal-mediated PhC≡N insertion into N,N-bis(trimethylsilyl) naphthalene-1,8-diamido dianion - a synthetic approach to complexes coordinated by ansa-bridged amido-amidinato ligand. Dalton Trans., 2018, 47, 438. https://doi.org/10.1039/C7DT03809G

    Article  CAS  PubMed  Google Scholar 

  14. A. S. Krupin, A. A. Knyazev, and Y. G. Galyametdinov. Lanthanide-containing nematic phases with controlled polarized luminescence at room temperature. Liq. Cryst. Their Appl., 2018, 18, 15. https://doi.org/10.18083/LCAppl.2018.1.15

    Article  CAS  Google Scholar 

  15. A. A. Knyazev, A. S. Krupin, B. Heinrich, B. Donnio, and Y. G. Galyametdinov. Controlled polarized luminescence of smectic lanthanide complexes. Dyes Pigm., 2018, 148, 492. https://doi.org/10.1016/j.dyepig.2017.08.018

    Article  CAS  Google Scholar 

  16. R. Pogreb, B. Finkelshtein, Y. Shmukler, A. Musina, O. Popov, O. Stanevsky, S. Yitzchaik, A. Gladkikh, A. Shulzinger, V. Streltsov, D. Davidov, and E. Bormashenko. Low-density polyethylene films doped with europium(III) complex: Their properties and applications. Polym. Adv. Technol., 2004, 15, 414. https://doi.org/10.1002/pat.488

    Article  CAS  Google Scholar 

  17. I. V. Kalinovskaya, A. N. Zadorozhnaya, and A. G. Mirochnik. Photolysis of light-transforming polymeric materials based on europium(III) nitrate with 1,10-phenanthroline and quinaldic acid. Opt. Spectrosc., 2017, 123, 388. https://doi.org/10.1134/S0030400X17090132

    Article  CAS  Google Scholar 

  18. K. Buczko and M. Karbowiak. Colour-tuneable double-layer polymeric films doped with lanthanide. J. Lumin., 2013, 143, 241. https://doi.org/10.1016/j.jlumin.2013.04.013

    Article  CAS  Google Scholar 

  19. Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts. Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon. Opt. Lett., 2016, 41, 5708. https://doi.org/10.1364/OL.41.005708

    Article  CAS  PubMed  Google Scholar 

  20. T. Wang, M. Liu, and Y. Wang. Color-tunable luminescent Ln3+ composite as self-referencing and ratiometric sensor for low-level water detection in ethanol. Mater. Res. Bull., 2017, 95, 426. https://doi.org/10.1016/j.materresbull.2017.08.022

    Article  CAS  Google Scholar 

  21. N. Lei, D. Shen, X. Wang, J. Wang, Q. Li, and X. Chen. Enhanced full color tunable luminescent lyotropic liquid crystals from P123 and ionic liquid by doping lanthanide complexes and AIEgen. J. Colloid Interface Sci., 2018, 529, 122. https://doi.org/10.1016/j.jcis.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  22. G. Blasse and B. C. Grabmaier. Energy transfer. In: Luminescent Materials / Eds. G. Blasse and B. C. Grabmaier. Berlin, Heidelberg, Germany: Springer, 1994, Ch. 5. https://doi.org/10.1007/978-3-642-79017-1

    Book  Google Scholar 

  23. G. A. Hebbink. Luminescent materials based on lanthanide ions. Basic properties and application in NIR-LEDs and optical amplifiers: Ph.D. Dissertation. Enschede, Netherlands: Twente University Press, 2002.

  24. J. C. G. Bunzli, S. Comby, A. S. Chauvin, and C. D. B. Vandevyver. New opportunities for lanthanide luminescence. J. Rare Earths, 2007, 25, 257. https://doi.org/10.1016/S1002-0721(07)60420-7

    Article  Google Scholar 

  25. K. Binnemans. Rare-earth beta-diketonates. In: Handbook on the Physics and Chemistry of Rare Earths / Eds. K. A. Gschneidner Jr., J. C. G. Bünzli, and V. K. Pecharsky. Oxford: Elsevier, 2005, Ch. 35. https://doi.org/10.1016/S0168-1273(05)35003-3

    Chapter  Google Scholar 

  26. K. Binnemans. Lanthanide-based luminescent hybrid materials. Chem. Rev., 2009, 109, 4283. https://doi.org/10.1021/cr8003983

    Article  CAS  PubMed  Google Scholar 

  27. J. C. G. Bunzli and S. V. Eliseeva. Intriguing aspects of lanthanide luminescence. Chem. Sci., 2013, 4, 1939. https://doi.org/10.1039/C3SC22126A

    Article  CAS  Google Scholar 

  28. J. Feng and H. Zhang. Hybrid materials based on lanthanide organic complexes: A review. Chem. Soc. Rev., 2013, 42, 387. https://doi.org/10.1039/C2CS35069F

    Article  CAS  PubMed  Google Scholar 

  29. V. I. Vovna, A. A. Dotsenko, V. V. Korochentsev, O. L. Shckeka, I. S. Os′mushko, A. G. Mirochnik, T. V. Sedakova, and V. I. Sergienko. Electronic structure and luminescence of antimony(III) halide complexes with N,N′-diphenylguanidine. J. Mol. Struct., 2015, 1091, 138. https://doi.org/10.1016/j.molstruc.2015.02.068

    Article  CAS  Google Scholar 

  30. V. I. Vovna, V. V. Korochentsev, A. A. Komissarov, I. B. Lvov, and N. S. Myshakina. Electronic structure and photoelectron spectra of nickel(II) acetylacetonate and its thio- and amino-substituted analogues. J. Mol. Struct., 2015, 1099, 579. https://doi.org/10.1016/j.molstruc.2015.07.014

    Article  CAS  Google Scholar 

  31. N. A. Gelfand, A. Yu. Freidzon, and V. I. Vovna. Theoretical insights into UV–Vis absorption spectra of difluoroboron β-diketonates with an extended π system: An analysis based on DFT and TD-DFT calculations. Spectrochim. Acta, Part A, 2019, 216, 161. https://doi.org/10.1016/j.saa.2019.02.064

    Article  CAS  PubMed  Google Scholar 

  32. A. Ya. Freidzon, I. A. Kurbatov, and V. I. Vovna. Ab initio calculation of energy levels of trivalent lanthanide ions. Phys. Chem. Chem. Phys., 2018, 20, 14564. https://doi.org/10.1039/C8CP91784A

    Article  CAS  PubMed  Google Scholar 

  33. V. I. Nefedov and V. I. Vovna. Elektronnaya struktura khimicheskikh soyedinenii (Electronic Structure of Chemical Compounds). Moscow, Russia: Nauka, 1987. [In Russian]

  34. A. V. Shurygin, V. I. Vovna, V. V. Korochentsev, A. G. Mirochnik, I. V. Kalinovskaya, and V. I. Sergienko. Optical properties and electronic structure of Eu(III) complexes with HMPA and TPPO. Spectrochim. Acta, Part A, 2021, 250, 119397. https://doi.org/10.1016/j.saa.2020.119397

    Article  CAS  PubMed  Google Scholar 

  35. T. Wang, M. Liu, and Y. Wang. Color-tunable luminescent Ln3+ composite as self-referencing and ratiometric sensor for low-level water detection in ethanol. Mater. Res. Bull., 2017, 95, 426. https://doi.org/10.1016/j.materresbull.2017.08.022

    Article  CAS  Google Scholar 

  36. N. S. Baek, M. K. Nah, Y. H. Kim, and H. K. Kim. Ln(III)-cored complexes based on 2-thenoyltrifluoroacetone ligand for near infrared emission: Energy transfer pathway and transient absorption behavior. J. Lumin., 2007, 127, 707. https://doi.org/10.1016/j.jlumin.2007.03.020

    Article  CAS  Google Scholar 

  37. L. R. Melby, N. J. Rose, E. Abramson, and J. C. Caris. Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes. J. Am. Chem. Soc., 1964, 86(23), 5117-5125. https://doi.org/10.1021/ja01077a015

    Article  CAS  Google Scholar 

  38. A. A. Granovsky. Firefly, ver. 8.1. 2014, http://classic.chem.msu.su/gran/firefly/index.html

  39. A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6), 3098-3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  40. M. Dolg, H. Stoll, and H. Preuss. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 1989, 90, 1730. https://doi.org/10.1063/1.456066

    Article  CAS  Google Scholar 

  41. A. D. McLean and G. S. Chandler. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J. Chem. Phys., 1980, 72(10), 5639-5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  42. M. W. Schmidt and M. S. Gordon. The construction and interpretation of MCSCF wavefunctions. Annu. Rev. Phys. Chem., 1998, 49, 233. https://doi.org/10.1146/annurev.physchem.49.1.233

    Article  CAS  PubMed  Google Scholar 

  43. A. A. Granovsky. Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. J. Chem. Phys., 2011, 134, 214113. https://doi.org/10.1063/1.3596699

    Article  PubMed  Google Scholar 

  44. CasaXPS Version 2.3.18. Teignmouth, England: Casa Software, 2017.

  45. V. A. Petrov, W. J. Marshall, and V. V. Grushin. The first perfluoroacetylacetonate metal complexes: As unexpectedly robust as tricky to make. Chem. Commun., 2002, 5, 520. https://doi.org/10.1039/B111249J

    Article  Google Scholar 

  46. G. Herzberg. Molecular Spectra and Molecular Structure. Vol. 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules. New York, USA: Van Nostrand, 1966.

  47. K. Ogasawara, S. Watanabe, H. Toyoshima, and M. G. Brik. First-principles calculations of 4fn→4fn–15d transition spectra. In: Handbook on the Physics and Chemistry of Rare Earths, Vol. 37 / Eds. K. A. Gschneidner Jr., J. C. G. Bünzli, and V. K. Pecharsky. Oxford: Elsevier, 2007, Ch. 231. https://doi.org/10.1016/S0168-1273(07)37031-1

    Chapter  Google Scholar 

  48. A. V. Shurygin, V. I. Vovna, V. V. Korochentsev, A. I. Cherednichenko, I. V. Kalinovskaya, and A. G. Mirochnik. Electronic structure and optical properties of Eu(III) tris-beta-diketonate adducts with 1,10-phenanthroline. J. Mol. Struct., 2018, 1155, 133. https://doi.org/10.1016/j.molstruc.2017.10.110

    Article  CAS  Google Scholar 

  49. V. I. Vovna, S. A. Tikhonov, M. V. Kazachek, I. B. Lvov, V. V. Korochentsev, E. V. Fedorenko, and A. G. Mirochnik. Electronic structure and optical properties of boron difluoride dibenzoylmethane F2Bdbm. J. Electron. Spectrosc. Relat. Phenom., 2013, 189, 116. https://doi.org/10.1016/j.elspec.2013.08.009

    Article  CAS  Google Scholar 

  50. P. A. Cox. Fractional parentage methods for ionization of open shells of d and f electrons. In: Photoelectron Spectrometry: Structure and Bonding, Vol. 24. Berlin, Heidelberg, Germany: Springer, 1975, 59. https://doi.org/10.1007/BFb0113705

    Chapter  Google Scholar 

  51. B. V. Crist. Handbook of Monochromatic XPS Spectra: The Elements of Native Oxides. Wiley, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shurygin.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 119983.https://doi.org/10.26902/JSC_id119983

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygin, A.V., Korochentsev, V.V., Kurbatov, I.A. et al. Electronic Structure and Optical Properties of the Adducts of Er3+ and Yb3+ Thenoyltrifluoracetonate with TPPO. J Struct Chem 64, 2404–2416 (2023). https://doi.org/10.1134/S0022476623120120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120120

Keywords

Navigation