Skip to main content
Log in

Bromination of Pyrazole and Pyrazolate Ligands in [Mo5S5(pz)4(pzH)5]Br2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The ligand environment of the \([\{\text{Mo}_{5}\text{S}_{5}^{\text{i}}(\text{pz})_{4}^{\text{i}}\}(\text{pzH})_{5}^{\text{t}}]\text{Br}_{2}\) cluster complex is modified by a reaction of the cluster with Br2 in N,N-dimethylformamide at room temperature, which results in bromination of all pyrazole and pyrazolate ligands at the fourth position and in bromide ligand substitution for apical pyrazole. The solvent effect on ligand bromination is considered. The \([\{\text{Mo}_{5}\text{S}_{5}^{\text{i}}(4\text{-Br-pz})_{4}^{\text{i}}\}(4\text{-Br-pzH})_{4}^{\text{bs}}\text{B}{{\text{r}}^{\text{a}}}]\text{Br}\cdot \text{E}{{\text{t}}_{2}}\text{O}\cdot \text{5DMF}\) cluster complex crystallizes in the tetragonal symmetry (space group P4/n) and forms infinite layers via hydrogen bonds between the terminal 4-bromopyrazole ligands and the bromine anion. The complex also demonstrates reversible one-electron reductions of the cluster core shifted relative to the initial compound by 30 mV and 90 mV towards larger potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. Fedorov. Metal clusters. As they were born in Siberia. J. Clust. Sci., 2015, 26(1), 3-15. https://doi.org/10.1007/s10876-014-0736-y

    Article  CAS  Google Scholar 

  2. Y. M. Gayfulin, Y. V. Mironov, and N. G. Naumov. High-valence cluster compounds of transition metals containning interstitial heteroatoms: Geometry, electronic structure, and physicochemical properties. J. Struct. Chem., 2021, 62(3), 331-355. https://doi.org/10.1134/s002247662103001x

    Article  CAS  Google Scholar 

  3. A. L. Gushchin, Y. A. Laricheva, M. N. Sokolov, and R. Llusar. Tri- and tetranuclear molybdenum and tungsten chalcogenide clusters: On the way to new materials and catalysts. Russ. Chem. Rev., 2018, 87(7), 670-706. https://doi.org/10.1070/rcr4800

    Article  CAS  Google Scholar 

  4. S. N. Khanna, A. C. Reber, D. Bista, T. Sengupta, and R. Lambert. The superatomic state beyond conventional magic numbers: Ligated metal chalcogenide superatoms. J. Chem. Phys., 2021, 155(12). https://doi.org/10.1063/5.0062582

    Article  PubMed  Google Scholar 

  5. K. Kirakci, M. A. Shestopalov, and K. Lang. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord. Chem. Rev., 2023, 481, 215048. https://doi.org/10.1016/j.ccr.2023.215048

    Article  CAS  Google Scholar 

  6. N. T. K. Nguyen, C. Lebastard, M. Wilmet, N. Dumait, A. Renaud, S. Cordier, N. Ohashi, T. Uchikoshi, and F. Grasset. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): inorganic 0D and 2D powders and films. Sci. Technol. Adv. Mater., 2022, 23(1), 547-578. https://doi.org/10.1080/14686996.2022.2119101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. A. Mikhaylov and M. N. Sokolov. Molybdenum iodides - from obscurity to bright luminescence. Eur. J. Inorg. Chem., 2019, 2019(39/40), 4181-4197. https://doi.org/10.1002/ejic.201900630

    Article  CAS  Google Scholar 

  8. S. Akagi, S. Fujii, and N. Kitamura. A study on the redox, spectroscopic, and photophysical characteristics of a series of octahedral hexamolybdenum(II) clusters: [{Mo6X8}Y6]2– (X, Y = Cl, Br, or I). Dalton Trans., 2018, 47(4), 1131-1139. https://doi.org/10.1039/c7dt04485b

    Article  CAS  PubMed  Google Scholar 

  9. D. V. Evtushok, A. R. Melnikov, N. A. Vorotnikova, Y. A. Vorotnikov, A. A. Ryadun, N. V. Kuratieva, K. V. Kozyr, N. R. Obedinskaya, E. I. Kretov, I. N. Novozhilov, Y. V. Mironov, D. V. Stass, O. A. Efremova, and M. A. Shestopalov. A comparative study of optical properties and X-ray induced luminescence of octahedral molybdenum and tungsten cluster complexes. Dalton Trans., 2017, 46(35), 11738-11747. https://doi.org/10.1039/c7dt01919j

    Article  CAS  PubMed  Google Scholar 

  10. A. A. Krasilnikova, A. O. Solovieva, A. A. Ivanov, K. E. Trifonova, T. N. Pozmogova, A. R. Tsygankova, A. I. Smolentsev, E. I. Kretov, D. S. Sergeevichev, M. A. Shestopalov, Y. V. Mironov, A. M. Shestopalov, A. F. Poveshchenko, and L. V. Shestopalova. Comprehensive study of hexarhenium cluster complex Na4[{Re6Te8}(CN)6] - In terms of a new promising luminescent and X-ray contrast agent. Nanomedicine, 2017, 13(2), 755-763. https://doi.org/10.1016/j.nano.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  11. M. V. Shamshurin, M. A. Mikhaylov, T. Sukhikh, E. Benassi, A. R. Tarkova, A. A. Prokhorikhin, E. I. Kretov, M. A. Shestopalov, P. A. Abramov, and M. N. Sokolov. Octahedral {Ta6I12} clusters. Inorg. Chem., 2019, 58(14), 9028-9035. https://doi.org/10.1021/acs.inorgchem.9b00364

    Article  CAS  PubMed  Google Scholar 

  12. A. A. Ulantikov, Y. M. Gayfulin, A. A. Ivanov, T. S. Sukhikh, M. R. Ryzhikov, K. A. Brylev, A. I. Smolentsev, M. A. Shestopalov, and Y. V. Mironov. Soluble molecular rhenium cluster complexes exhibiting multistage terminal ligands reduction. Inorg. Chem., 2020, 59(9), 6460-6470. https://doi.org/10.1021/acs.inorgchem.0c00546

    Article  CAS  PubMed  Google Scholar 

  13. V. K. Muravieva, I. P. Loginov, T. S. Sukhikh, M. R. Ryzhikov, V. V. Yanshole, V. A. Nadolinny, V. Dorcet, S. Cordier, and N. G. Naumov. Synthesis, structure, and spectroscopic study of redox-active heterometallic cluster-based complexes [Re5MoSe8(CN)6]n. Inorg. Chem., 2021, 60(12), 8838-8850. https://doi.org/10.1021/acs.inorgchem.1c00763

    Article  CAS  PubMed  Google Scholar 

  14. I. V. Savina, A. A. Ivanov, D. V. Evtushok, Y. M. Gayfulin, A. Y. Komarovskikh, M. M. Syrokvashin, M. N. Ivanova, I. P. Asanov, I. V. Eltsov, N. V. Kuratieva, Y. V. Mironov, and M. A. Shestopalov. Unusual square pyramidal chalcogenide Mo5 cluster with bridging pyrazolate-ligands. Int. J. Mol. Sci., 2023, 24(4), 3440. https://doi.org/10.3390/ijms24043440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. I. V. Savina, A. A. Ivanov, I. V. Eltsov, V. V. Yanshole, N. V. Kuratieva, A. Y. Komarovskikh, M. M. Syrokvashin, and M. A. Shestopalov. Chemical diversity of Mo5S5 clusters with pyrazole: Synthesis, redox and UV-vis-NIR absorption properties. Int. J. Mol. Sci., 2023, 24(18), 13879. https://doi.org/10.3390/ijms241813879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  17. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  18. J. D. Vaughan, D. G. Lambert, and V. L. Vaughan. Kinetics and mechanism of iodination of pyrazole. Comparative reactivities of pyrazole and imidazole. J. Am. Chem. Soc., 1964, 86(14), 2857-2861. https://doi.org/10.1021/ja01068a019

    Article  CAS  Google Scholar 

  19. J. D. Vaughan and W. A. Smith. Kinetics of iodination of nickel(II)-coordinated pyrazole. J. Am. Chem. Soc., 1972, 94(7), 2460-2463. https://doi.org/10.1021/ja00762a044

    Article  CAS  Google Scholar 

  20. H. R. Matthews, L. C. Bucke, and A. G. Blackman. Electrophilic substitution of metal-coordinated pyrazole: Nitration, sulfonation and bromination of [Co(NH3)5(pyzH)]3+ (pyzH = pyrazole). Inorg. Chim. Acta, 1998, 277(1), 89-97. https://doi.org/10.1016/s0020-1693(97)06120-3

    Article  CAS  Google Scholar 

  21. K. L. Olsen, M. R. Jensen, and J. A. MacKay. A mild halogenation of pyrazoles using sodium halide salts and oxone. Tetrahedron Lett., 2017, 58(43), 4111-4114. https://doi.org/10.1016/j.tetlet.2017.09.042

    Article  CAS  Google Scholar 

  22. Z. Zhao and Z. Wang. Halogenation of pyrazoles using N-halosuccinimides in CCl4 and in water. Synth. Commun., 2007, 37(1), 137-147. https://doi.org/10.1080/00397910600978549

    Article  CAS  Google Scholar 

  23. Y. L. Janin. Preparation and chemistry of 3/5-halogenopyrazoles. Chem. Rev., 2012, 112(7), 3924-3958. https://doi.org/10.1021/cr200427q

    Article  CAS  PubMed  Google Scholar 

  24. S. Guillou, F. J. Bonhomme, M. S. Ermolenko, and Y. L. Janin. Simple preparations of 4 and 5-iodinated pyrazoles as useful building blocks. Tetrahedron, 2011, 67(44), 8451-8457. https://doi.org/10.1016/j.tet.2011.09.029

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Grant No. 19-73-20109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 122349.https://doi.org/10.26902/JSC_id122349

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savina, I.V., Ivanov, A.A. & Shestopalov, M.A. Bromination of Pyrazole and Pyrazolate Ligands in [Mo5S5(pz)4(pzH)5]Br2. J Struct Chem 64, 2451–2460 (2023). https://doi.org/10.1134/S0022476623120168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120168

Keywords

Navigation