Skip to main content
Log in

Photoluminescent Properties of Eu3+ in Different γ-, η-, θ-, and α-Al2O3 Polymorphs

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Photoluminescent properties of the Eu3+ ion as a probe are studied in γ-, η-, θ-, and α-Al2O3:Eu3+ polymorphs with an europium concentration of 0.05 wt.%. The photoluminescence (PL) spectra of Eu3+ ions are analyzed in the 5D0 → 7FJ (J = 0-4) transition region along with the asymmetry ratio, decay kinetics, and PL excitation spectra. It is found that Eu3+ ions incorporate into the Al2O3 lattice and occupy the site with the C3v local symmetry. The biexponential nature of the Eu3+ PL decay kinetics in γ-, η-, θ-, and Al2O3:Eu3+ polymorphs is shown to be due to the occurrence of Eu3+ ions both in the bulk and at subsurface sites. For α-Al2O3:Eu3+ the concentration of surface centers is minimum and the PL decay kinetics is described only by one exponent. Based on the comprehensive analysis of the obtained results on PL of single-phase Al2O3 powders, the characteristic features are revealed, such as PL intensity, electronic structure of 5D0 → 7FJ transitions, asymmetry ratio, position of the O2– → Eu3+ charge transfer band, and 5D0 lifetimes. These characteristics allow the use of Eu3+ ions as structure-sensitive probes to study the local structure of Al2O3 and to identify its phase composition during structural transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava. Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale, 2015, 7, 13313. https://doi.org/10.1039/C5NR02369F

    Article  CAS  PubMed  Google Scholar 

  2. Alumina Chemicals: Science and Technology Handbook / Eds. L.D. Hart, E. Lense. Wiley, 2006.

  3. M. Trueba and S. P. Trasatti. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem., 2005, 3393. https://doi.org/10.1002/ejic.200500348

    Article  CAS  Google Scholar 

  4. S. V. Tsybulya and G. N. Kryukova. Nanocrystalline transition aluminas: Nanostructure and features of x-ray powder diffraction patterns of low-temperature Al2O3 polymorphs. Phys. Rev. B, 2008, 77, 024112. https://doi.org/10.1103/PhysRevB.77.024112

    Article  Google Scholar 

  5. É. M. Moroz, K. I. Shefer, D. A. Zyuzin, and A. N. Shmakov. A study of the local structure of aluminas obtained by different methods. J. Struct. Chem., 2011, 52, 326. https://doi.org/10.1134/S0022476611020120

    Article  CAS  Google Scholar 

  6. É. M. Moroz, D. A. Zyuzin, K. I. Shefer, and L. A. Isupova. Radial distribution model curves of electron density for aluminum oxides and hydroxides. J. Struct. Chem., 2007, 48 (4), 704. https://doi.org/10.1007/s10947-007-0105-x

    Article  CAS  Google Scholar 

  7. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya. Luminescence of impurity 3d and metal ions in different crystalline forms of Al2O3. Phys. Solid State, 2000, 42, 857. https://doi.org/10.1134/1.1131301

    Article  CAS  Google Scholar 

  8. K. Binnemans. Interpretation of europium(III) spectra. Coord. Chem. Rev., 2015, 295, 1. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  9. P. A. Tanner. Some misconceptions concerning the electronic spectra of tripositive europium and cerium. Chem. Soc. Rev., 2013, 42, 5090. https://doi.org/10.1039/C3CS60033E

    Article  CAS  PubMed  Google Scholar 

  10. Y. Yang, B. Wang, A. Cormack, E. Zych, H. J. Seo, and Y. Wu. Theoretical analysis and experiment on Eu reduction in alumina optical materials. Opt. Mater. Express, 2016, 6, 2404. https://doi.org/10.1364/OME.6.002404

    Article  CAS  Google Scholar 

  11. Y. Onishi, T. Nakamura, and S. Adachi. Solubility limit and luminescence properties of Eu3+ ions in Al2O3 powder. J. Lumin., 2016, 176, 266.

  12. A. A. Kaplyanskiĭ, A. B. Kulinkin, A. B. Kutsenko, S. P. Feofilov, R. I. Zakharchenya, and T. N. Vasilevskaya. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Phys. Solid State, 1998, 40, 1310. https://doi.org/10.1134/1.1130551

    Article  Google Scholar 

  13. S. P. Feofilov, A. A. Kaplyanskii, and R. I. Zakharchenya. Luminescence and laser spectroscopy of highly porous γ-Al2O3 doped with 3d- and 4f-ions: Effects of spatial phonon confinement. J. Lumin., 1997, 72, 41. https://doi.org/10.1016/S0022-2313(96)00223-2

    Article  CAS  Google Scholar 

  14. G. Hirata, N. Perea, M. Tejeda, J. A. Gonzalez-Ortega, and J. McKittrick. Luminescence study in Eu-doped aluminum oxide phosphors. Opt. Mater., 2005, 27, 1311.

  15. K. Smits, D. Millers, and A. Zolotarjovs. Luminescence of Eu ion in alumina prepared by plasma electrolyticoxidation. Appl. Surf. Sci., 2015, 337, 166.

  16. P. A. Tanner, Z. Pan, N. Rakov, and G. S. Maciel. Luminescence of Eu3+ in α-Al2O3 powders. J. Alloys Compd., 2006, 424, 347.

  17. J. Wrzyszcz, W. Mista, D. Hreniak, W. Stręk, M. Zawadzki, and H. Grabowska. Preparation and optical properties of nanostructured europium-doped γ-Al2O3. J. Alloys Compd., 2002, 341, 358. https://doi.org/10.1016/S0925-8388(02)00037-3

    Article  CAS  Google Scholar 

  18. N. Rakov and G. S. Maciel. Photoluminescence analysis of α-Al2O3 powders doped with Eu3+ and Eu2+ ions. J. Lumin., 2007, 127, 703.

  19. M. A. F. Monteiro, H. F. Brito, and M. C. F. C. M. Felinto. Photoluminescence behavior of Eu3+ ion doped into γ- and α-alumina systems prepared by combustion, ceramic and Pechini methods. Microporous Mesoporous Mater., 2008, 108, 237.

  20. N. Rakov, G. S. Maciel, B. W. Lozano, and C. B. Araújo. Europium luminescence enhancement in Al2O3:Eu3+ powders prepared by direct combustion synthesis. J. Appl. Phys., 2007, 101, 036102. https://doi.org/10.1063/1.2431400

    Article  Google Scholar 

  21. K. J. Ciuffi, O. J. Lima, H. C. Sacco, and E. J. Nassar. Eu3+ entrapped in alumina matrix obtained by hydrolytic and non-hydrolytic sol–gel routes. J. Non-Cryst. Solids, 2002, 304, 126. https://doi.org/10.1016/S0022-3093(02)01014-1

    Article  CAS  Google Scholar 

  22. M. Nogami. Reduction mechanism for Eu ions in Al2O3 containing glasses by heat treatment in H2 gas. Phys. Chem. B, 2015, 119, 1778. https://doi.org/10.1021/jp511513n

    Article  CAS  PubMed  Google Scholar 

  23. C. Verdozzi, D. R. Jennison, P. A. Schultz, M. P. Sears, J. C. Barbour, and B. G. Potter. Unusual structural relaxation for rare-earth impurities in sapphire: ab initio study of lanthanum. Phys. Rev. Lett., 1998, 80, 5615. https://doi.org/10.1103/PhysRevLett.80.5615

    Article  CAS  Google Scholar 

  24. M. G. Baronskiy, S. V. Tsybulya, A. I. Kostyukov, A. V. Zhuzhgov, and V. N. Snytnikov. Structural properties investigation of different alumina polymorphs (η-, γ-, χ-, θ-, α-Al2O3) using Cr3+ as a luminescent probe. J. Lumin., 2022, 242, 118554. https://doi.org/10.1016/j.jlumin.2021.118554

    Article  CAS  Google Scholar 

  25. M. G. Baronskiy, A. I. Kostyukov, T. V. Larina, V. N. Snytnikov, N. A. Zaitseva, and A. V. Zhuzhgov. Photoluminescence of surface chromium centers in the Cr/Al2O3 system that is active in isobutane dehydrogenation. Mat. Chem. Phys., 2019, 234, 403. https://doi.org/10.1016/j.matchemphys.2019.05.022

    Article  CAS  Google Scholar 

  26. A. A. Rastorguev, M. G. Baronskiy, N. A. Zaitseva, L. A. Isupova, A. I. Kostyukov, T. V. Larina, N. A. Pakhomov, and V. N. Snytnikov. Photoluminescence properties of microspherical alumina-chromium catalyst. Inorg. Mater. Appl. Res., 2014, 5, 476. https://doi.org/10.1134/S2075113314050153

    Article  Google Scholar 

  27. I. Levin and D. Brandon. Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc., 1998, 81, 1995. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

    Article  CAS  Google Scholar 

  28. A. I. Kostyukov, V. N. Snytnikov, A. V. Zhuzhgov, S. V. Cherepanova, A. V. Ishchenko, M. G. Baronskiy, and V. N. Snytnikov. Size-dependent photoluminescence of europium in alumina nanoparticles synthesized by cw CO2 laser vaporization. J. Alloys Compd., 2020, 815, 152476. https://doi.org/10.1016/j.jallcom.2019.152476

    Article  CAS  Google Scholar 

  29. J. Li, Y. Shi, J. Gong, and G. Chen. Mossbauer study of amorphous Al2O3:Eu3+. J. Mater. Sci. Lett., 1997, 16, 743. https://doi.org/10.1023/A:1018585115325

    Article  CAS  Google Scholar 

  30. A. I. Kostyukov, V. N. Snytnikov, A. P. Yelisseyev, A. V. Zhuzhgov, N. Y. Kostyukova, A. V. Ishchenko, S. V. Cherepanova, and V. N. Snytnikov. Synthesis, structure and optical properties of the laser synthesized Al2O3 nanopowders depending on the crystallite size and vaporization atmosphere. Adv. Powder Technol., 2021, 32, 2733. https://doi.org/10.1016/j.apt.2021.05.044

    Article  CAS  Google Scholar 

  31. R. Dai, Z. Wang, Z. Zhang, and Z. Ding. Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. J. Rare Earths, 2010, 28, 241. https://doi.org/10.1016/S1002-0721(10)60275-X

    Article  Google Scholar 

  32. N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao. Strong photoluminescence and cathodoluminescence due to ff transitions in Eu3+ doped Al2O3 powders prepared by direct combustion synthesis and thin films deposited by laser ablation. Appl. Phys. Lett., 2003, 83, 272. https://doi.org/10.1063/1.1592636

    Article  CAS  Google Scholar 

  33. I. E. Kolesnikov, A. V. Povolotskiy, D. V. Mamonova, E. Yu. Kolesnikov, A. V. Kurochkin, E. Lähderanta, and M. D. Mikhailov. Asymmetry ratio as a parameter of Eu3+ local environment in phosphors. J. Rare Earths, 2018, 36, 474. https://doi.org/10.1016/j.jre.2017.11.008

    Article  CAS  Google Scholar 

  34. J. Kaszewski, B. S. Witkowski, Ł. Wachnicki, H. Przybylińska, B. Kozankiewicz, E. Mijowska, and M. Godewski. Luminescence enhancement in nanocrystalline Eu2O3 nanorods - Microwave hydrothermal crystallization and thermal degradation of cubic phase. Opt. Mater., 2016, 59, 76. https://doi.org/10.1016/j.optmat.2016.01.039

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the State Assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project AAAA-A21-121011390009-1 and AAAA-A21-121011490008-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kostyukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 119770.https://doi.org/10.26902/JSC_id119770

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyukov, A.I., Baronskii, M.G. & Zhuzhgov, A.V. Photoluminescent Properties of Eu3+ in Different γ-, η-, θ-, and α-Al2O3 Polymorphs. J Struct Chem 64, 2391–2403 (2023). https://doi.org/10.1134/S0022476623120119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120119

Keywords

Navigation