Skip to main content
Log in

Nano-Sized Copper Films Prepared by Magnetron Sputtering

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Copper films with a thickness varying from 6 nm to 100 nm are prepared by magnetron sputtering. The films are characterized by homogeneous and fine-grained microstructure. The X-ray diffraction data confirm formation of a copper fcc phase orientated predominantly in the (111) direction. Depending on the growth conditions, the size of Cu grains in the films varies from 7 nm to 20 nm. The refractive index of the films increases from 0.52 to 1.22 with decreasing copper film thickness. The transmittance of the films decreases as their thickness increases from 6 nm to 62 nm, and the transparency of the films with the same thickness decreases with increasing sputtering power and decreasing argon flow rate. The surface resistivity of the films decreases from 8.89±0.06 Ω/sq to 1.47±0.01 Ω/sq as their thickness increases from 20 nm to 70 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. J. R. Davis. ASM Specialty Handbook: Copper and Copper Alloys. ASM International, 2001.

  2. J. Sarkar. Sputtering Materials for VLSI and Thin Film Devices. William Andrew, 2014, Chap. 5: Sputtering targets and thin films for integrated circuits, 291-416. https://doi.org/10.1016/b978-0-8155-1593-7.00005-9

    Chapter  Google Scholar 

  3. Y. Cao, Y. Xia, B. Duan, W. Mu, X. Tan, and H. Wu. Microstructure evolution and anti-wear mechanism of Cu film fabricated by magnetron sputtering deposition. Mater. Lett., 2022, 315. https://doi.org/10.1016/j.matlet.2022.131941

    Article  CAS  Google Scholar 

  4. H.-W. Kim. Recent trends in copper metallization. Electronics, 2022, 11, 2914. https://doi.org/10.3390/electronics11182914

    Article  CAS  Google Scholar 

  5. H. Li, P. Wei, D. Gao, and G. Wang. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem., 2022, 34, 100589. https://doi.org/10.1016/j.cogsc.2022.100589

    Article  CAS  Google Scholar 

  6. Y. Yin, W. Jing, F. Wang, Y. Liu, and L. Guo. Electro-reduced copper on polymeric C3N4 for photocatalytic reduction of CO2. Carbon, 2023, 214, 118317. https://doi.org/10.1016/j.carbon.2023.118317

    Article  CAS  Google Scholar 

  7. S. Rtimi, D. D. Dionysiou, S. C. Pillai, and J. Kiwi. Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl. Catal., B, 2019, 240, 291-318. https://doi.org/10.1016/j.apcatb.2018.07.025

    Article  CAS  Google Scholar 

  8. A. Radisic, O. Lühn, H. G. G. Philipsen, Z. El-Mekki, M. Honore, S. Rodet, S. Armini, C. Drijbooms, H. Bender, and W. Ruythooren. Copper plating for 3D interconnects. Microelectron. Eng., 2011, 88, 701-704. https://doi.org/10.1016/j.mee.2010.06.030

    Article  CAS  Google Scholar 

  9. S. Lim, D. Han, H. Kim, S. Lee, and S. Yoo. Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells. Sol. Energy Mater. Sol. Cells, 2012, 101, 170-175. https://doi.org/10.1016/j.solmat.2012.01.016

    Article  CAS  Google Scholar 

  10. P. Xiong, Y. Liu, T. Ding, P. Chen, H. Wang, and Y. Duan. Transparent electrodes based on ultrathin/ultra smooth Cu films produced through atomic layer deposition as new ITO-free organic light-emitting devices. Org. Electron., 2018, 58, 18-24. https://doi.org/10.1016/j.orgel.2018.03.036

    Article  CAS  Google Scholar 

  11. V. N. Vertoprakhov and S. A. Krupoder. Preparation of thin copper films from the vapour phase of volatile copper(I) and copper(II) derivatives by the CVD method. Usp. Khim., 2000, 69, 1149-1177. https://doi.org/10.1070/rc2000v069n12abeh000572

    Article  CAS  Google Scholar 

  12. A. M. Willcocks, T. Pugh, J. A. Hamilton, A. L. Johnson, S. P. Richards, and A. J. Kingsley. CVD of pure copper films from novel iso-ureate complexes. Dalton Trans., 2013, 42, 5554-5565. https://doi.org/10.1039/c3dt00104k

    Article  CAS  PubMed  Google Scholar 

  13. S. Walke, M. B. Mandake, M. Naniwadekar, R. W. Tapre, T. Ghosh, and Y. Qureshi. A review on copper chemical vapour deposition. Mater. Today Proc., 2023. https://doi.org/10.1016/j.matpr.2022.12.140

    Article  Google Scholar 

  14. N. Bahlawane, P. A. Premkumar, F. Reilmann, K. Kohse-Höinghaus, J. Wang, F. Qi, B. Gehl, and M. Bäumer. CVD of conducting ultrathin copper films. J. Electrochem. Soc., 2009, 156, D452. https://doi.org/10.1149/1.3205478

    Article  CAS  Google Scholar 

  15. J. L. Hodgkinson, D. Massey, and D. W. Sheel. The deposition of copper-based thin films via atmospheric pressure plasma-enhanced CVD. Surf. Coatings Technol., 2013, 230, 260-265. https://doi.org/10.1016/j.surfcoat.2013.06.053

    Article  CAS  Google Scholar 

  16. V. Krisyuk, L. Aloui, N. Prud′Homme, S. Sysoev, F. Senocq, D. Saḿlor, and C. Vahlas. CVD of pure copper films from amidinate precursor. Electrochem. Solid-State Lett., 2011, 14, D26. https://doi.org/10.1149/1.3526142

    Article  CAS  Google Scholar 

  17. K. Bernal Ramos, M. J. Saly, and Y. J. Chabal. Precursor design and reaction mechanisms for the atomic layer deposition of metal films. Coord. Chem. Rev., 2013, 257, 3271-3281. https://doi.org/10.1016/j.ccr.2013.03.028

    Article  CAS  Google Scholar 

  18. Z. Li, A. Rahtu, and R. G. Gordon. Atomic layer deposition of ultrathin copper metal films from a liquid copper(I) amidinate precursor. J. Electrochem. Soc., 2006, 153, C787. https://doi.org/10.1149/1.2338632

    Article  CAS  Google Scholar 

  19. O. Stenzel, S. Wilbrandt, S. Stempfhuber, D. Gäbler, and S.-J. Wolleb. Spectrophotometric characterization of thin copper and gold films prepared by electron beam evaporation: Thickness dependence of the drude damping parameter. Coatings, 2019, 9, 181. https://doi.org/10.3390/coatings9030181

    Article  CAS  Google Scholar 

  20. J. Vancea, F. Hofmann, and H. Hoffmann. Grain size-dependent Hall coefficient in polycrystalline copper films. J. Phys. Condens. Matter, 1989, 1, 7419-7424. https://doi.org/10.1088/0953-8984/1/40/015

    Article  CAS  Google Scholar 

  21. B. Im, S. Kim, and S.-H. Kim. Nucleation-controlled growth of Cu thin films electrodeposited directly on ALD Ru diffusion barrier in additive-free electrolyte for Cu interconnect. Microelectron. Eng., 2023, 275, 111991. https://doi.org/10.1016/j.mee.2023.111991

    Article  CAS  Google Scholar 

  22. A. I. Vorobjova, V. A. Labunov, E. A. Outkina, and D. V. Grapov. Metallization of vias in silicon wafers to produce three-dimensional microstructures. Russ. Microelectron., 2021, 50, 8-18. https://doi.org/10.1134/s1063739721010108

    Article  CAS  Google Scholar 

  23. D. Meng, Y. G. Li, Z. T. Jiang, and M. K. Lei. Stick-climb-slip induced damage mode in Cu/Si(100) thin films deposited by modulated pulsed power magnetron sputtering during scratch. Vacuum, 2020, 174, 109233. https://doi.org/10.1016/j.vacuum.2020.109233

    Article  CAS  Google Scholar 

  24. D. Meng, Y. G. Li, Z. T. Jiang, and M. K. Lei. Scratch behavior and FEM modelling of Cu/Si(100) thin films deposited by modulated pulsed power magnetron sputtering. Surf. Coatings Technol., 2019, 363, 25-33. https://doi.org/10.1016/j.surfcoat.2019.02.008

    Article  CAS  Google Scholar 

  25. M. V. Shandrikov, I. D. Artamonov, A. S. Bugaev, E. M. Oks, K. V. Oskomov, and A. V. Vizir. Deposition of Cu-films by a planar magnetron sputtering system at ultra-low operating pressure. Surf. Coatings Technol., 2020, 389, 125600. https://doi.org/10.1016/j.surfcoat.2020.125600

    Article  CAS  Google Scholar 

  26. B. L. Zhu, C. H. Yi, X. Zhao, J. M. Ma, J. Wu, and X. W. Shi. Improvement of transparent conductive properties of Cu films by introducing H2 into deposition atmosphere during RF magnetron sputtering. Superlattices Microstruct., 2020, 145, 106628. https://doi.org/10.1016/j.spmi.2020.106628

    Article  CAS  Google Scholar 

  27. B. Giroire, M. Ali Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J. J. Watkins, C. Aymonier, and A. Poulon-Quintin. A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques. Thin Solid Films, 2017, 643, 53-59. https://doi.org/10.1016/j.tsf.2017.09.002

    Article  CAS  Google Scholar 

  28. S. K. Mukherjee, L. Joshi, and P. K. Barhai. A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering. Surf. Coatings Technol., 2011, 205, 4582-4595. https://doi.org/10.1016/j.surfcoat.2011.03.119

    Article  CAS  Google Scholar 

  29. K. Mech, R. Kowalik, and P. Żabiński. Cu thin films deposited by DC magnetron sputtering for contact surfaces on electronic components. Arch. Metall. Mater., 2011, 56, 903-908. https://doi.org/10.2478/v10172-011-0099-4

    Article  Google Scholar 

  30. Z. A. Ansari, K. Hong, and C. Lee. Structural and electrical properties of porous silicon with rf-sputtered Cu films. Mater. Sci. Eng. B, 2002, 90, 103-109. https://doi.org/10.1016/S0921-5107(01)00917-5

    Article  Google Scholar 

  31. E. Shahriari and M. Ghasemi Varnamkhasti. Nonlinear optical and electrical characterization of nanostructured Cu thin film. Superlattices Microstruct., 2014, 75, 523-532. https://doi.org/10.1016/j.spmi.2014.08.001

    Article  CAS  Google Scholar 

  32. K.-Y. Chan and B.-S. Teo. Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique. Microelectronics J., 2006, 37, 1064-1071. https://doi.org/10.1016/j.mejo.2006.04.008

    Article  CAS  Google Scholar 

  33. K.-Y. Chan, T.-Y. Tou, and B.-S. Teo. Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. Microelectronics J., 2006, 37, 608-612. https://doi.org/10.1016/j.mejo.2005.09.016

    Article  CAS  Google Scholar 

  34. D. L. Ma, P. P. Jing, Y. L. Gong, B. H. Wu, Q. Y. Deng, Y. T. Li, C. Z. Chen, Y. X. Leng, and N. Huang. Structure and stress of Cu films prepared by high power pulsed magnetron sputtering. Vacuum, 2019, 160, 226-232. https://doi.org/10.1016/j.vacuum.2018.11.039

    Article  CAS  Google Scholar 

  35. H.-D. Liu, Y.-P. Zhao, G. Ramanath, S. Murarka, and G.-C. Wang. Thickness dependent electrical resistivity of ultrathin (< 40 nm) Cu films. Thin Solid Films, 2001, 384, 151-156. https://doi.org/10.1016/S0040-6090(00)01818-6

    Article  CAS  Google Scholar 

  36. X. Cui, D. A. Hutt, and P. P. Conway. Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate. Thin Solid Films, 2012, 520, 6095-6099. https://doi.org/10.1016/j.tsf.2012.05.068

    Article  CAS  Google Scholar 

  37. B. H. Wu, J. Wu, F. Jiang, D. L. Ma, C. Z. Chen, H. Sun, Y. X. Leng, and N. Huang. Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering. Vacuum, 2017, 135, 93-100. https://doi.org/10.1016/j.vacuum.2016.10.032

    Article  CAS  Google Scholar 

  38. V. A. Vdovin, V. G. Andreev, P. S. Glazunov, I. A. Khorin, and Y. V. Pinaev. Optical coefficients of nanoscale copper films in the range of 9-11 GHz. Opt. Spectrosc., 2019, 127, 907-913. https://doi.org/10.1134/S0030400X19110274

    Article  CAS  Google Scholar 

  39. E. D. Palik. Handbook of Optical Constants of Solids, Vol. 1. Academic Press, 1985. https://doi.org/10.1016/C2009-0-20920-2

    Book  Google Scholar 

  40. W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data, 2009, 38, 1013-1092. https://doi.org/10.1063/1.3243762

    Article  CAS  Google Scholar 

  41. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt., 1985, 24, 4493. https://doi.org/10.1364/ao.24.004493

    Article  CAS  PubMed  Google Scholar 

  42. J. M. Elazar, A. B. Djurišić, A. D. Rakić, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37(22), 5271-5283. https://doi.org/10.1364/ao.37.005271

    Article  PubMed  Google Scholar 

  43. H.-J. Hagemann, W. Gudat, and C. Kunz. Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am., 1975, 65, 742. https://doi.org/10.1364/josa.65.000742

    Article  CAS  Google Scholar 

  44. P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6, 4370-4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  45. Inorganic Crystal Structure Database. Germany: FIZ Karlsruhe, https://icsd.products.fiz-karlsruhe.de/.

  46. M. M. Shehata, A. M. Abdelreheem, S. A. Waly, and A. H. Ashour. Cu and Ag nanoparticles films deposited on glass substrate using cold cathode ion source. J. Inorg. Organomet. Polym. Mater., 2017, 27, 720-727. https://doi.org/10.1007/s10904-017-0515-y

    Article  CAS  Google Scholar 

  47. A. A. Solovyev, V. A. Semenov, V. O. Oskirko, K. V. Oskomov, A. N. Zakharov, and S. V. Rabotkin. Properties of ultra-thin Cu films grown by high power pulsed magnetron sputtering. Thin Solid Films, 2017, 631, 72-79. https://doi.org/10.1016/j.tsf.2017.04.005

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation (project No. 23-79-00026, https://rscf.ru/project/23-79-00026/) using facilities of the Shared Research Center “National Center of Investigation of Catalysts” at Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sulyaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 121572.https://doi.org/10.26902/JSC_id121572

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulyaeva, V.S., Shayapov, V.R., Syrokvashin, M.M. et al. Nano-Sized Copper Films Prepared by Magnetron Sputtering. J Struct Chem 64, 2438–2450 (2023). https://doi.org/10.1134/S0022476623120156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120156

Keywords

Navigation