Skip to main content
Log in

Effect of Titanium and Manganese Additions on the Surface Segregation of Barium in Hexaferrites

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Distribution of chemical elements in polycrystalline BaFe12–xTixO19 and BaFe12–xMnxO19 barium ferrite samples is studied. The samples are prepared by solid-phase synthesis at 1400 °C from stoichiometric mixtures of oxides and carbonates. The XRD data indicate that all the studied samples have one crystalline phase characteristic of the M-type hexaferrite structure. The Curie temperatures are determined by differential scanning calorimetry. It is shown that replacing iron with Ti and Mn atoms diminishes the temperature of magnetic phase transition. The difference in bulk and surface atomic composition between the studied ferrites are established by XRD and XPS. It is shown that barium can exhibit surface segregation. The replacement of iron by manganese in the barium hexaferrite structure leads to surface segregation of barium, while the replacement by titanium hinders the segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Z. F. Abdurashidova and N. A. Nurmatov. Izuchenie vliyaniya segregatsii i termodiffuzii atomov bariya na fotoemissionnuyu effektivnost′ splava Mg–Ba (1%) (Study of the influence of segregation and thermal diffusion of barium atoms on the photoemissive efficiency of the alloy Mg–Ba (1%)). Akad. Issled. Obl. Pedag. Nauk, 2021, 2(4), 677-682. [In Russian]

  2. V. G. Shevchenko, M. V. Kuznetsov, S. A. Bibanaeva, A. V. Konyukova, I. A. Chupova, I. N. Latosh, V. A. Kochedykov, and D. A. Eselevich. Poverhnostnaya segregaciya kal′ciya i ee vliyanie na kinetiku okisleniya poroshkov splavov na osnove alyuminiya (Surface segregation of calcium and its influence on the kinetics of oxidation of aluminum-based alloy powders). Fizikokhim. Poverkhn. Zashch. Mater., 2012, 48(6), 540-545. [In Russian]

  3. V. G. Shevchenko, D. A. Eselevich, A. I. Ancharov, and B. P. Tolochko. Vliyanie bariya na kinetiku okisleniya poroshka splava na osnove alyuminiya (Effect of barium on the oxidation kinetics of aluminum-based alloy powder). Fiz. Goreniya Vzryva, 2014, 50(6), 28-33. [In Russian]

  4. A. S. Li. Sposob izgotovleniya oksidnogo katoda (Method for manufacturing an oxide cathode). Patent RU 2 060 570 C1, 1995. [In Russian]

  5. L. Wang, J. Zhang, Q. Zhang, N. Xu, and J. Song. XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. J. Magn. Magn. Mater., 2015, 377, 362-367. https://doi.org/10.1016/J.JMMM.2014.10.097

    Article  CAS  Google Scholar 

  6. K.-I. Mehnert, M. Häßner, Y. M. Dreer, I. Biswas, and R. Niewa. Crystal structure and XPS study of titanium-substituted M-type hexaferrite BaFe12–xTixO19. Inorganics, 2023, 11(5), 207. https://doi.org/10.3390/inorganics11050207

    Article  CAS  Google Scholar 

  7. M. Saeedi, M. Abdellahi, A. Rahimi, and A. Khandan. Preparation and characterization of nanocrystalline barium ferrite ceramic. Funct. Mater. Lett., 2016, 09(05), 1650068. https://doi.org/10.1142/s1793604716500685

    Article  CAS  Google Scholar 

  8. R. Pattanayak, S. Panigrahi, T. Dash, R. Mudulisurname, and D. Beherasurname. Electric transport properties study of bulk BaFe12O19 by complex impedance spectroscopy. Phys. B, 2015, 474, 57-63. https://doi.org/10.1016/J.PHYSB.2015.06.006.

    Article  CAS  Google Scholar 

  9. K. Huang, J. Yu, L. Zhang, J. Xu, Z. Yang, C. Liu, W. Wang, and X. Kan. Structural and magnetic properties of Gd–Zn substituted M-type Ba–Sr hexaferrites by sol-gel auto-combustion method. J. Alloys Compd., 2019, 803, 971-980. https://doi.org/10.1016/J.JALLCOM.2019.06.348.

    Article  CAS  Google Scholar 

  10. K. Huang, J. Yu, L. Zhang, J. Xu, P. Li, Z. Yang, C. Liu, W. Wang, and X. Kan. Synthesis and characterizations of magnesium and titanium doped M-type barium calcium hexaferrites by a solid state reaction method. JAlloys Compd., 2020, 825, 154072. https://doi.org/10.1016/J.JALLCOM.2020.154072.

    Article  CAS  Google Scholar 

  11. A. Bhaduri, S. Singh, K. B. Thapa, and B. C. Yadav. Visible light-induced, highly responsive, below lower explosive limit (LEL) LPG sensor based on hydrothermally synthesized barium hexaferrite nanorods. Sens. Actuators B, 2021, 348, 130714. https://doi.org/10.1016/J.SNB.2021.130714

    Article  CAS  Google Scholar 

  12. S. Anand, S. Pauline, and C. J. Prabagar. Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym. Test., 2020, 86, 106504. https://doi.org/10.1016/J.POLYMERTESTING.2020.106504

    Article  CAS  Google Scholar 

  13. M. Manikandan and C. Venkateswaran. Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater., 2014, 358/359, 82-86. https://doi.org/10.1016/j.jmmm.2014.01.041

    Article  CAS  Google Scholar 

  14. V. V. Atuchin, D. A. Vinnik, T. A. Gavrilova, S. A. Gudkova, L. I. Isaenko, X. Jiang, L. D. Pokrovsky, I. P. Prosvirin, L. S. Mashkovtseva, and Z. Lin. Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J. Phys. Chem. C, 2016, 120, 5114-5123. https://doi.org/10.1021/acs.jpcc.5b12243

    Article  CAS  Google Scholar 

  15. D. A. Vinnik, D. A. Zherebtsov, and L. S. Mashkovceva. Vyrashchivanie legirovannyh monokristallov ferrita bariya iz flyusa (Growing doped barium ferrite single crystals from flux). Dokl. Akad. Nauk, 2013, 449, 174/175. https://doi.org/10.7868/S0869565213080161 [In Russian]

    Article  PubMed  Google Scholar 

  16. K. V. Chernyakova, V. V. Pan′kov, M. I. Ivanovskaya, and V. A. Lomonosov. Struktura i magnitnye svojstva geksagonal′nogo ferrita bariya (Structure and magnetic properties of hexagonal barium ferrite). Vestn. BGU, 2008, 2(1), 9-13. [In Russian]

  17. D. A. Vinnik, F. V. Podgornov, N. S. Zabeivorota, E. A. Trofimov, V. E. Zhivulin, A. S. Chernukha, M. V. Gavrilyak, S. A. Gudkova, D. A. Zherebtsov, A. V. Ryabov, S. V. Trukhanov, T. I. Zubar, L. V. Panina, S. V. Podgornaya, M. V. Zdorovets, and A. V. Trukhanov. Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. J. Magn. Magn. Mater., 2020, 498, 166190. https://doi.org/10.1016/j.jmmm.2019.166190

    Article  CAS  Google Scholar 

  18. V. E. Zhivulin, I. A. Solizoda, D. A. Vinnik, S. A. Gudkova, E. A. Trofimov, A. Y. Starikov, O. V. Zaitseva, D. P. Sherstyuk, A. E. Vasiljeva, D. A. Zherebtsov, S. V. Taskaev, P. A. Zezyulina, D. A. Petrov, and A. V. Trukhanov. Impact of Al3+ ions on magnetic and microwave properties of BaM:Ti hexaferrites. J. Mater. Res. Technol., 2021, 11, 2235-2245. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.02.051.

    Article  CAS  Google Scholar 

  19. P. A. Zezyulina, D. A. Petrov, K. N. Rozanov, D. A. Vinnik, S. S. Maklakov, V. E. Zhivulin, A. Y. Starikov, D. P. Sherstyuk, and S. Shannigrahi. Study of the static and microwave magnetic properties of nanostructured BaFe12−xTixO19. Coatings, 2020, 10(8), 789. https://doi.org/10.3390/coatings10080789

    Article  CAS  Google Scholar 

  20. X. Obradors, A. Collomb, M. Pernet, J. C. Joubert, and A. Isalgué, Structural and magnetic properties of BaFe12–xMnxO19 hexagonal ferrites. J. Magn. Magn. Mater., 1984, 44, 118-128. https://doi.org/10.1016/0304-8853(84)90053-2

    Article  CAS  Google Scholar 

  21. D. A. Vinnik. Poluchenie monokristallov geksaferrita bariya svinca iz rastvora (Preparation of lead barium hexaferrite single crystals from solution). Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2016. 16(1), 7-12. https://doi.org/10.14529/met160101 [In Russian]

    Article  Google Scholar 

  22. A. M. Lebedev, K. A. Menshikov, V. G. Nazin, V. G. Stankevich, M. B. Tsetlin, and R. G. Chumakov. NanoPES photoelectron beamline of the kurchatov synchrotron radiation source. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2021, 15, 1039-1044. https://doi.org/10.1134/S1027451021050335

    Article  CAS  Google Scholar 

  23. X. Obradors, A. Collomb, M. Pernet, D. Samaras, and J. C. Joubert. X-ray analysis of the structural and dynamic properties of BaFe12O19 hexagonal ferrite at room temperature. J. Solid State Chem., 1985, 56, 171-181. https://doi.org/10.1016/0022-4596(85)90054-4

    Article  CAS  Google Scholar 

  24. D. A. Shirley. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B., 1972, 5, 4709-4714. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  25. CasaXPS, 2.3.25. Teignmouth, U.K.: Casa Software, 2022.

  26. S. Tanuma, C. Powell, and D. Penn. Inelastic mean free paths of low energy electrons in solids. Acta Phys. Pol., A, 1992, 81(2), 169-186, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=620392 (accessed Aug 17, 2023).

Download references

Funding

This study was funded by the Ministry of Science and Higher Education of the Russian Federation as part of Agreement No. 075-15-2021-1351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zhivulin.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 119470.https://doi.org/10.26902/JSC_id119470

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesin, L.A., Gudkova, S.A., Zhivulin, V.E. et al. Effect of Titanium and Manganese Additions on the Surface Segregation of Barium in Hexaferrites. J Struct Chem 64, 2358–2369 (2023). https://doi.org/10.1134/S0022476623120077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120077

Keywords

Navigation