Skip to main content
Log in

High-Efficiency Thermally Activated Delayed Fluorescence of a Copper(I) Complex Based on Octachloro-1,10-Phenanthroline

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A [Cu(phen-Cl8)(Xantphos)]PF6·2CH2Cl2 (1·2CH2Cl2) complex based on octachloro-1,10-phenanthroline (phen-Cl8) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) is prepared and studied. At 298 K, the crystalline form of the complex exhibits intense thermally activated delayed fluorescence (TADF) in the orange-red region with a quantum yield of 67% and a decay time of 2 µs. Upon cooling down to 77 K, the emission maximum exhibits a bathochromic shift from 622 nm to 650 nm, and the decay time increases up to 550 µs. Photoluminescence of the synthesized complex is additionally studied in the poly(methyl methacrylate) (PMMA) matrix and in a CH2Cl2 solution; the complex is shown to be X-ray luminescent. The spectral data and quantum chemical calculations show that the observed TADF is due to the charge transfer from the metal and phosphine ligand to the diimine group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development. In: Resolution adopted by the General Assembly on July 2017. United Nations, 2017, A/RES/71/313.

  2. C. Bizzarri, E. Spuling, D. M. Knoll, D. Volz, and S. Bräse. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev., 2018, 373, 49. https://doi.org/10.1016/j.ccr.2017.09.011

    Article  CAS  Google Scholar 

  3. S. C. Förster, K. Heinze, R. K. Pandey, D. K. P. Ng, T. Torres, F. Dumoulin, and C. Fö. Photophysics and photochemistry with Earth-abundant metals - fundamentals and concepts. Chem. Soc. Rev., 2020, 49, 1057. https://doi.org/10.1039/c9cs00573k

    Article  PubMed  CAS  Google Scholar 

  4. T. S. Sukhikh, R. M. Khisamov, and S. N. Konchenko. Unexpectedly long lifetime of the excited state of benzothiadiazole derivative and its adducts with Lewis acids. Molecules, 2021, 26, 2030. https://doi.org/10.3390/molecules26072030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. R. Khisamov, T. Sukhikh, D. Bashirov, A. Ryadun, and S. Konchenko. Structural and photophysical properties of 2,1,3-benzothiadiazole-based phosph(III)azane and its complexes. Molecules, 2020, 25, 2428. https://doi.org/10.3390/molecules25102428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Y. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi, and S. N. Konchenko. Tuning of the coordination and emission properties of 4-amino-2,1,3-benzothiadiazole by introduction of diphenylphosphine group. Cryst. Growth Des., 2020, 20, 5796. https://doi.org/10.1021/acs.cgd.0c00406

    Article  CAS  Google Scholar 

  7. K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalov, and M. B. Bushuev. Halide impact on emission of mononuclear copper(I) complexes with pyrazolylpyrimidine and triphenylphosphine. Dalton Trans., 2014, 43, 2953. https://doi.org/10.1039/c3dt53040j

    Article  PubMed  CAS  Google Scholar 

  8. F. Dumur. Recent advances in organic light-emitting devices comprising copper complexes: a realistic approach for low-cost and highly emissive devices? Org. Electron., 2015, 21, 27. https://doi.org/10.1016/j.orgel.2015.02.026

    Article  CAS  Google Scholar 

  9. Y. Zhang, M. Schulz, M. Wächtler, M. Karnahl, and B. Dietzek. Heteroleptic diimine–diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: Design strategies, photophysical properties and perspective applications. Coord. Chem. Rev., 2018, 356, 127. https://doi.org/10.1016/j.ccr.2017.10.016

    Article  CAS  Google Scholar 

  10. M. Alkan-Zambada, S. Keller, L. Martínez-Sarti, A. Prescimone, J. M. Junquera-Hernández, E. C. Constable, H. J. Bolink, M. Sessolo, E. Ortí, and C. E. Housecroft. [Cu(P^P)(N^N)][PF6] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2-bipyridine ligands for light-emitting electrochemical cells. J. Mater. Chem. C., 2018, 6, 8460. https://doi.org/10.1039/c8tc02882f

    Article  CAS  Google Scholar 

  11. S. Keller, A. Prescimone, M. G. La Placa, J. M. Junquera-Hernández, H. J. Bolink, E. C. Constable, M. Sessolo, E. Ortí, and C. E. Housecroft. The shiny side of copper: bringing copper(I) light-emitting electrochemical cells closer to application. RSC Adv., 2020, 10, 22631. https://doi.org/10.1039/d0ra03824e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. C. Li, R. Dickson, N. Rockstroh, J. Rabeah, D. B. Cordes, A. M. Z. Slawin, P. Hünemörder, A. Spannenberg, M. Bühl, E. Mejía, E. Zysman-Colman, and P. C. J. Kamer. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catal. Sci. Technol., 2020, 10, 7745. https://doi.org/10.1039/d0cy01221a

    Article  CAS  Google Scholar 

  13. C. Li, C. F .R. MacKenzie, S. A. Said, A. K. Pal, M. A. Haghighatbin, A. Babaei, M. Sessolo, D. B. Cordes, A. M. Z. Slawin, P. C. J. Kamer, H. J. Bolink, C. F. Hogan, and E. Zysman-Colman. Wide-bite-angle diphosphine ligands in thermally activated delayed fluorescent copper(I) complexes: Impact on the performance of electroluminescence applications. Inorg. Chem., 2021, 60, 10323. https://doi.org/10.1021/acs.inorgchem.1c00804

    Article  PubMed  CAS  Google Scholar 

  14. M. Meyer, L. Mardegan, D. Tordera, A. Prescimone, M. Sessolo, H. J. Bolink, E. C. Constable, and C. E. Housecroft. A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6′-dimethyl-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. Dalton Trans., 2021, 50, 17920. https://doi.org/10.1039/d1dt03239a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D. Chen, W. Li, L. Gan, Z. Wang, M. Li, and S. J. Su. Non-noble-metal-based organic emitters for OLED applications. Mater. Sci. Eng., R, 2020, 142, 100581. https://doi.org/10.1016/j.mser.2020.100581

    Article  Google Scholar 

  16. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev., 2011, 255, 2622. https://doi.org/10.1016/j.ccr.2011.01.042

    Article  CAS  Google Scholar 

  17. K. H. Kim, S. J. Yoo, and J. J. Kim. Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency. Chem. Mater., 2016, 28, 1936. https://doi.org/10.1021/acs.chemmater.6b00478

    Article  CAS  Google Scholar 

  18. C. Sandoval-Pauker, M. Santander-Nelli, and P. Dreyse. Thermally activated delayed fluorescence in luminescent cationic copper(I) complexes. RSC Adv., 2022, 12, 10653. https://doi.org/10.1039/d1ra08082b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. C. E. Housecroft and E. C. Constable. TADF: enabling luminescent copper(I) coordination compounds for light-emitting electrochemical cells. J. Mater. Chem. C, 2022, 10, 4456. https://doi.org/10.1039/d1tc04028f

    Article  CAS  Google Scholar 

  20. R. Czerwieniec, M. J. Leitl, H. H. H. Homeier, and H. Yersin. Cu(I) complexes - thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev., 2016, 325, 2. https://doi.org/10.1016/j.ccr.2016.06.016

    Article  CAS  Google Scholar 

  21. X. Li, S. Fu, Y. Xie, and Z. Li. Thermally activated delayed fluorescence materials for organic light-emitting diodes. Rep. Prog. Phys., 2023, 86, 096501. https://doi.org/10.1088/1361-6633/ace06a

    Article  Google Scholar 

  22. M. T. Buckner and D. R. McMillin. Photoluminescence from copper(I) complexes with low-lying metal-to-ligand charge transfer excited states. J. Chem. Soc., Chem. Commun., 1978, 759. https://doi.org/10.1039/c39780000759

    Article  Google Scholar 

  23. C. Titze, W. Kaim, and S. Zalis. Structural flexibility of the hydrogen-free acceptor ligand octachloro-1,10-phenanthroline in its complexes with d10 metal ions. Inorg. Chem., 1997, 36, 2505. https://doi.org/10.1021/ic960837o

    Article  CAS  Google Scholar 

  24. E. V. Kalneus, A. R. Melnikov, V. V. Korolev, V. I. Ivannikov, and D. V. Stass. A low-field magnetically affected reaction yield (MARY) spectrometer with spectral fluorescence resolution. Appl. Magn. Reson., 2013, 44, 81. https://doi.org/10.1007/s00723-012-0397-7

    Article  CAS  Google Scholar 

  25. M. A. Bondarenko, A. S. Novikov, I. F. Sakhapov, M. N. Sokolov, and S. A. Adonin. Heteroleptic Cu(I) halide complexes with perchlorinated 1,10-phenanthroline. J. Mol. Struct., 2021, 1234, 130199. https://doi.org/10.1016/j.molstruc.2021.130199

    Article  CAS  Google Scholar 

  26. A. V. Artem′ev, M. Y. Petyuk, A. S. Berezin, A. L. Gushchin, M. N. Sokolov, and I. Y. Bagryanskaya. Synthesis and study of Re(I) tricarbonyl complexes based on octachloro-1,10-phenanthroline: towards deep red-to-NIR emitters. Polyhedron, 2021, 209, 115484. https://doi.org/10.1016/j.poly.2021.115484

    Article  CAS  Google Scholar 

  27. C. Titze and W. Kaim. Polychlorinated biaryl heterocycles as potential ligands. Reactions between octachloro-1,10-phenanthroline and -2,2′-bipyridine with copper(I) and other metal ions. Z. Naturforsch., B, 1996, 51, 981. https://doi.org/10.1515/znb-1996-0713

    Article  CAS  Google Scholar 

  28. I. Y. Bagryanskaya, L. V. Politanskaya, and E. V. Tretyakov. Frequently used, but still unknown: terbium(III) tris-hexafluoroacetylacetonate dihydrate. Inorg. Chem. Commun., 2016, 66, 47. https://doi.org/10.1016/j.inoche.2016.02.009

    Article  CAS  Google Scholar 

  29. L. Politanskaya, J. Wang, N. Troshkova, I. Chuikov, and I. Bagryanskaya. One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J. Fluor. Chem., 2022, 263, 110045. https://doi.org/10.1016/j.jfluchem.2022.110045

    Article  CAS  Google Scholar 

  30. I. D. Gorokh, S. A. Adonin, A. S. Novikov, A. N. Usoltsev, P. E. Plyusnin, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin. Halobismuthates with 3-iodopyridinium cations: Halogen bonding-assisted crystal packing. Polyhedron, 2019, 166, 137. https://doi.org/10.1016/j.poly.2019.03.041

    Article  CAS  Google Scholar 

  31. A. N. Usoltsev, A. S. Novikov, M. N. Sokolov, and S. A. Adonin. Neutral heteroleptic complexes of bis(2-halopyridine)dihalocopper(II) family: How the nature of halogen atom affects supramolecular motifs and energies of halogen bonding in solid state? Solid State Sci., 2020, 109, 106441. https://doi.org/10.1016/j.solidstatesciences.2020.106441

    Article  CAS  Google Scholar 

  32. L. V. Politanskaya, P. A. Fedyushin, T. V. Rybalova, A. S. Bogomyakov, N. B. Asanbaeva, and E. V. Tretyakov. Fluorinated organic paramagnetic building blocks for cross-coupling reactions. Molecules, 2020, 25, 5427. https://doi.org/10.3390/molecules25225427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin. One-dimensional polymeric polybromotellurates(IV): structural and theoretical insights into halogen⋯halogen contacts. CrystEngComm, 2017, 19, 5934. https://doi.org/10.1039/c7ce01487b

    Article  CAS  Google Scholar 

  34. A. Mikhailov, N. Korobeynikov, A. Usoltsev, S. A. Adonin, G. A. Kostin, and D. Schaniel. Bismuth and antimony halometalates containing photoswitchable ruthenium nitrosyl complexes. Dalton Trans., 2023, 52, 919. https://doi.org/10.1039/D2DT03497B.

    Article  PubMed  CAS  Google Scholar 

  35. A. N. Usoltsev, N. A. Korobeynikov, B. A. Kolesov, A. S. Novikov, P. A. Abramov, M. N. Sokolov, and S. A. Adonin. Oxochloroselenate(IV) with incorporated {Cl2}: The case of strong Cl⋯Cl halogen bonding. Chem. - Eur. J., 2021, 27, 9292. https://doi.org/10.1002/chem.202101024

    Article  CAS  Google Scholar 

  36. S. A. Adonin, I. D. Gorokh, A. S. Novikov, A. N. Usoltsev, M. N. Sokolov, and V. P. Fedin. Tetranuclear anionic bromobismuthate [Bi4Br18]6−: new structural type in halometalate collection. Inorg. Chem. Commun., 2019, 103, 72. https://doi.org/10.1016/j.inoche.2019.03.014

    Article  CAS  Google Scholar 

  37. S. S. Batsanov. Van der Waals radii of elements. Inorg. Mater., 2001, 37, 871. https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  38. S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27, 1787. https://doi.org/10.1002/jcc.20495

    Article  PubMed  CAS  Google Scholar 

  39. J. Zheng, X. Xu, and D. G. Truhlar. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc., 2011, 128, 295. https://doi.org/10.1007/s00214-010-0846-z

    Article  CAS  Google Scholar 

  40. C. Minozzi, A. Caron, J.-C. Grenier-Petel, J. Santandrea, and S. K. Collins. Heteroleptic copper(I)-based complexes for photocatalysis: Combinatorial assembly, discovery, and optimization. Angew. Chem., 2018, 130, 5575. https://doi.org/10.1002/ange.201800144

    Article  Google Scholar 

  41. J. Wöhler, M. Meyer, A. Prescimone, C. E. Housecroft, and E. C. Constable. The effects of introducing terminal alkenyl substituents into the 2,2-bipyridine domain in [Cu(N^N)(P^P)]+ coordination compounds. Dalton Trans., 2022, 51, 13094. https://doi.org/10.1039/d2dt01799g

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 19-73-20196-P). Luminescent properties were studied at the Centre for Optical and Laser Materials Research of the Saint-Petersburg State University Research Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Artem’ev.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 121372.https://doi.org/10.26902/JSC_id121372

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petyuk, M.Y., Rakhmanova, M.I., Sadykov, E.K. et al. High-Efficiency Thermally Activated Delayed Fluorescence of a Copper(I) Complex Based on Octachloro-1,10-Phenanthroline. J Struct Chem 64, 2427–2437 (2023). https://doi.org/10.1134/S0022476623120144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120144

Keywords

Navigation