Skip to main content
Log in

Investigating the Structural and Surface Properties of Copper and Nickel Complexes Fluorine-Based Salen Type Schiff Bases

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new transition metal complexes, NiL1 (1) and CuL2 (2), with formulations C18H12F6N2NiO4 and C18H12CuF6N2O4, respectively, were synthesized through the slow evaporation method in ethanol. The synthesized complexes were extensively characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy techniques. X-ray crystallographic analysis revealed that the Ni(II) and Cu(II) salen complexes consist of double deprotonated tetrafunctional chelating ligands, namely L1 for NiL1 and L2 for CuL2, along with the corresponding metal cations, Ni+2 and Cu+2. The asymmetric unit of NiL1 comprises half of the molecule, while the asymmetric unit of CuL2 consists of a single molecule. In the crystal lattice, the molecules of both complexes are interconnected through C–H⋯O and C–H⋯F hydrogen bonds. Additionally, weak π⋯π interactions contribute to the formation of a layered structure in both complexes. To gain further insight into the intermolecular interactions, Hirshfeld surface analysis was employed, enabling the identification of atom locations with potential for hydrogen bonding and providing a quantitative assessment of these interactions in the complexes. The analysis revealed that the dominant contributions to the Hirshfeld surface originated from F⋯H, H⋯H, and O⋯H contacts in both NiL1 and CuL2 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. M. Inoue, Y. Sumii, and N. Shibata. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega, 2020, 5(19), 10633-10640. https://doi.org/10.1021/acsomega.0c00830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. G. Chen, J. Mo, D. Jiang, and Y. Peng. Synthesis of chiral 1,1,1-trifluoro-α,α-disubstituted 2,4-diketones via palladium-catalyzed asymmetric allylation. Org. Lett., 2023, 25(14), 2388-2393. https://doi.org/10.1021/acs.orglett.3c00364

    Article  PubMed  CAS  Google Scholar 

  3. H. Mehmood, T. Akhtar, M. Haroon, M. Khalid, S. Woodward, M. A. Asghar, R. Baby, R. Orfali, and S. Perveen. Synthesis of fluorinated hydrazinylthiazole derivatives: A virtual and experimental approach to diabetes management. ACS Omega, 2023, 8(12), 11433-11446. https://doi.org/10.1021/acsomega.3c00265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. N. Rao, Y.-Z. Li, Y.-C. Luo, Y. Zhang, and X. Zhang. Nickel-catalyzed multicomponent carbodifluoroalkylation of electron-deficient alkenes. ACS Catal., 2023, 13(7), 4111-4119. https://doi.org/10.1021/acscatal.2c06149

    Article  CAS  Google Scholar 

  5. R. Drozdzak, B. Allaert, N. Ledoux, I. Dragutan, V. Dragutan, and F. Verpoort. Synthesis of Schiff base-ruthenium complexes and their applications in catalytic processes. Adv. Synth. Catal., 2005, 347, 1721-1743. https://doi.org/10.1002/adsc.200404389

    Article  CAS  Google Scholar 

  6. J. Lewinski, J. Zacharaa, I. Justyniak, and M. Drank. Hydrogen-bond supramolecular structure of group 13 Schiff base complexes. Coord. Chem. Rev., 2005, 249, 1185-1199. https://doi.org/10.1016/j.ccr.2004.11.013

    Article  CAS  Google Scholar 

  7. X. Liu, C. Manzur, N. Novoa, S. Celedón, D. Carrillo, and J. R. Hamon. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev., 2018, 357, 144-172. https://doi.org/10.1016/j.ccr.2017.11.030

    Article  CAS  Google Scholar 

  8. M. Karmakar and S. Chattopadhyay. A comprehensive overview of the orientation of tetradentate N2O2donor Schiff base ligands in octahedral complexes of trivalent 3d metals. J. Mol. Struct., 2019, 1186, 155-186. https://doi.org/10.1016/j.molstruc.2019.02.091

    Article  CAS  Google Scholar 

  9. X. , L. , Y., J. , and D. . Syntheses, characterization and biological studies of zinc(II), copper(II) and cobalt(II) complexes with Schiff base ligand derived from 2-hydroxy-1-naphthaldehyde and selenomethionine. Appl. Organometal. Chem., 2010, 24, 741-747. https://doi.org/10.1002/aoc.1678

    Article  CAS  Google Scholar 

  10. D. Majumdar, S. Dey, S. S. Sreejithc, J. K. Biswas, M. Mondal, P. Shuklae, S. Dase, T. Palf, D. Das, K. Bankura, and D. Mishr. Syntheses, crystal structures and photo physical aspects of azido-bridged tetranuclear cadmium(II) complexes: DFT/TD-DFT, thermal, antibacterial andanti-biofilm properties. J. Mol. Struct., 2019, 1179, 694-708. https://doi.org/10.1016/j.molstruc.2018.11.010

    Article  CAS  Google Scholar 

  11. C. Che, C. Kwok, S. Lai, A. F. Rausch, W. J. Finkenzeller, N. Zhu, and H. Yersin. Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chem. Eur. J., 2010, 16(1), 233-247. https://doi.org/10.1002/chem.200902183

    Article  CAS  Google Scholar 

  12. X. Liu and J. R. Hamon. Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord. Chem. Rev., 2019, 389, 94-118. https://doi.org/10.1016/j.ccr.2019.03.010

    Article  CAS  Google Scholar 

  13. P. Bhunia, S. Maity, J. Mayans, and A. Ghosh. Templated synthesis of Ni(II) complexes of unsymmetrical Schiff base ligands derived from 1,3-diamino-2-propanol: structural diversity and magnetic properties. New J. Chem., 2022, 46(9), 4363-4372. https://doi.org/10.1039/D1NJ05638G

    Article  CAS  Google Scholar 

  14. Shehnaz, W. A. Siddiqui, A. Ashraf, M. Ashfaq, M. N. Tahir, and S. Niaz. Sulfonamide derived Schiff base Mn(II), Co(II), and Ni(II) complexes: Crystal structures, density functional theory and Hirshfeld surface analysis. Appl. Organomet. Chem., 2023, 37(6), e7077. https://doi.org/10.1002/aoc.7077

    Article  Google Scholar 

  15. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, M. Bahadori, M. Moghadam, M. Ashfaq, K. S. Munawar, and M. N. Tahir. Spectroscopic investigation, molecular structure, catalytic activity with computational studies of a novel Pd(II) complex incorporating unsymmetrical tetradentate Schiff base ligand. Inorg. Chem. Commun., 2022, 142, 109697. https://doi.org/10.1016/j.inoche.2022.109697

    Article  CAS  Google Scholar 

  16. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, M. Bahadori, M. Moghadam, M. Ashfaq, K. S. Munawar, and M. N. Tahir. Synthesis, crystal structure, spectral characterization, catalytic studies and computational studies of Ni(II) and Pd(II) complexes of symmetrical tetradentate Schiff base ligand. J. Coord. Chem., 2022, 75(7/8), 972-993. https://doi.org/10.1080/00958972.2022.2092846

    Article  CAS  Google Scholar 

  17. H. Kargar, M. Ashfaq, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K. S. Munawar, and M. N. Tahir. Unsymmetrical Ni(II) Schiff base complex: Synthesis, spectral characterization, crystal structure analysis, Hirshfeld surface investigation, theoretical studies, and antibacterial activity. J. Mol. Struct., 2022, 1265, 133381. https://doi.org/10.1016/j.molstruc.2022.133381

    Article  CAS  Google Scholar 

  18. E. Alaman, A. A. Ağar, M. N. Tahir, M. Ashfaq, E. B. Poyraz, and N. Dege. Synthesis, structural, spectroscopic, hirshfeld surface analysis and computational study of copper complex containing salicylaldimine ligands. J. Struct. Chem., 2023, 64(7), 1314-1328. https://doi.org/10.1134/s0022476623070156

    Article  CAS  Google Scholar 

  19. L. H. Abdel-Rahman, N. M. Ismail, M. Ismael, A. M. Abu-Dief, and E. A. H. Ahmed. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct., 2017, 1134, 851-862. https://doi.org/10.1016/j.molstruc.2017.01.036

    Article  CAS  Google Scholar 

  20. S. Sujarani and A. Ramu. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies. J. Mol. Struct., 2015, 1079, 353-362. https://doi.org/10.1016/j.molstruc.2014.08.041

    Article  CAS  Google Scholar 

  21. W. Chen, Y. Li, Y. Cui, X. Zhang, H. Zhu, and Q. Zeng. Synthesis, molecular docking and biological evaluation of Schiff basetransition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45, 4473-4478. https://doi.org/10.1016/j.ejmech.2010.07.007

    Article  PubMed  CAS  Google Scholar 

  22. Ö. Güngör, Z. Demircioğlu, and A. Gölcü. The new dimeric copper(II) complex from anticancer drug cytosine arabinoside. J. Mol. Struct., 2022, 1270, 133826. https://doi.org/10.1016/j.molstruc.2022.133826

    Article  CAS  Google Scholar 

  23. S. Özkınalı, Ş. Yavuz, T. Tosun, D. Ali Köse, M. Gür, and H. Kocaokutgen. Synthesis, spectroscopic and thermal analysis and investigation of dyeing properties of o-hydroxy Schiff bases and their metal complexes. ChemistrySelect, 2020, 5(40), 12624-12634. https://doi.org/10.1002/slct.202002470

    Article  CAS  Google Scholar 

  24. B. Zambelli, F. Musiani, S. Benini, and S. Ciurli. Chemistry of Ni2+ in urease: Sensing, trafficking, and catalysis. Acc. Chem. Res., 2011, 447, 520-530. https://doi.org/10.1021/ar200041k

    Article  PubMed  CAS  Google Scholar 

  25. X-AREA and X-RED32. Darmstadt, Germany: Stoe & Cie, 2002.

  26. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  27. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  28. L. J. Farrugia. ORTEP-3 for Windows - a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr., 1997, 30(5), 565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  29. A. L. J. Spek. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36(1), 7-13. https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  30. L. J. Farrugia. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr., 2012, 45, 849-854. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  31. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm., 2009, 11, 19-32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  32. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  33. M. Shakir, N. Shahid, N. Sami, M. Azam, and A. U. Khan. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from l-leucine and glyoxal. Spectrochim. Acta, Part A, 2011, 82, 31-36. https://doi.org/10.1016/j.saa.2011.06.035

    Article  PubMed  CAS  Google Scholar 

  34. G. A. Kohawole and K. S. Patel. The stereochemistry of oxovanadium(IV) complexes derived from salicylaldehyde and polymethylenediamines. Dalton Trans., 1981, 1241-1245. https://doi.org/10.1039/DT9810001241

    Article  Google Scholar 

  35. M. Azam, S. Dwivedi, S. I. Al-Resayes, S. F. Adil, M. S. Islam, A. Trzesowska-Kruszynska, R. Kruszynski, and D. U. Lee. Cu(II) salen complex with propylene linkage: An efficient catalyst in the formation of CX bonds (X = N, O, S) and biological investigations. J. Mol. Struct., 2017, 1130, 122-127. https://doi.org/10.1016/j.molstruc.2016.10.021

    Article  CAS  Google Scholar 

  36. M. Asadi, K. A. Jamshid, and A. H. Kyanfar. Synthesis, characterization and equilibrium study of the dinuclear adducts formation between nickel(II) Salen-type complexes with diorganotin(IV) dichlorides in chloroform. Inorg. Chim. Acta, 2007, 360, 1725-1730. https://doi.org/10.1016/j.ica.2006.09.013

    Article  CAS  Google Scholar 

  37. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons, 2009. https://doi.org/10.1002/9780470405888

    Book  Google Scholar 

  38. G. Socrates. Infrared Characteristic Group Frequencies. New York, USA: Wiley Intersciences, 1980.

  39. G. Varsanyi. Vibrational Spectra of Benzene Derivatives. New York, USA: Academic Press, 1969.

  40. C. Şenol, Z. Hayvali, H. Dal, and T. Hökelek. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes. J. Mol. Struct., 2011, 997(1-3), 53-59. https://doi.org/10.1016/j.molstruc.2011.04.037

    Article  CAS  Google Scholar 

  41. O. Z. Yeşilel, H. Erer, G. Kaştaş, and İ. Kani. Hydrogen bonded networks and a self-assembled 1D water cluster in nickel(II) and copper(II)-orotate complexes. Polyhedron, 2010, 29(13), 2600-2608. https://doi.org/10.1016/j.poly.2010.06.011

    Article  CAS  Google Scholar 

  42. A. J. M. Al-Karawi, A. A. B. OmarAli, S. Mangelsen, N. Dege, S. Kansız, P. Breuninger, C. Baydere, and O. B. OmarAli. An unprecedented formation of new copper(II) complexes as bioactive materials based on copper-catalyzed click reaction. Polyhedron, 2021, 198, 115084. https://doi.org/10.1016/j.poly.2021.115084

    Article  CAS  Google Scholar 

  43. A. J. M. Al-Karawi, A.-A. B. OmarAli, N. Dege, and S. Kansız. Formation of a new CuII-triazole ester complex from 1,2-cyclohexanedione-bis(p-bromobenzohydrazone) compound as a consequence of copper(II)-catalyzed click reaction. Chem. Pap., 2021, 75(8), 3901-3914. https://doi.org/10.1007/s11696-021-01614-x

    Article  CAS  Google Scholar 

  44. S. Kansız, A. M. Qadir, N. Dege, and S. H. Faizi. Two new copper(II) carboxylate complexes based on N, N, N′, N′-tetramethylethyleneamine: Synthesis, crystal structures, spectral properties, DFT studies and Hirshfeld surface analysis. J. Mol. Struct., 2021, 1230, 129916. https://doi.org/10.1016/j.molstruc.2021.129916

    Article  CAS  Google Scholar 

  45. S. Kansız, A. Tolan, H. İçbudak, and N. Dege. Synthesis, crystallographic structure, theoretical calculations, spectral and thermal properties of trans-diaquabis (trans-4-aminoantipyrine) cobalt(II) acesulfamate. J. Mol. Struct., 2019, 1190, 102-115. https://doi.org/10.1016/j.molstruc.2019.04.058

    Article  CAS  Google Scholar 

  46. W. Guerrab, I.M. Chung, S. Kansiz, J. T. Mague, N. Dege, J. Taoufik, R. Salghi, I. H. Ali, M. I. Khan, H. Lgaz, and Y. Ramli. Synthesis, structural and molecular characterization of 2,2-diphenyl-2H,3H,5H,6H,7H-imidazo[2,1-b][1,3]thiazin-3-one. J. Mol. Struct., 2019, 1197, 369-376. https://doi.org/10.1016/j.molstruc.2019.07.081

    Article  CAS  Google Scholar 

  47. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A

    Article  CAS  Google Scholar 

  48. O. Simsek, M. Ashfaq, M. N. Tahir, S. Ozturk, and E. Agar. Synthesis and charaterizations of the Schiff base derived from 2-hydroxy-5-nitrobenzaldehyde along with Hirshfeld surface analysis and computational study. J. Struct. Chem., 2023, 64(5), 942-953. https://doi.org/10.1134/S0022476623050128

    Article  CAS  Google Scholar 

  49. A. R. Raza, S. L. Rubab, M. Ashfaq, Y. Altaf, M. N. Tahir, M. F. U. Rehman, T. Aziz, M. Alharbi, and A. F. Alasmari. Evaluation of antimicrobial, anticholinesterase potential of indole derivatives and unexpectedly synthesized novel benzodiazine: Characterization, DFT and Hirshfeld charge analysis. Molecules, 2023, 28(13), 5024. https://doi.org/10.3390/molecules28135024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. A. N. Malik, M. N. Tahir, A. Ali, M. Ashfaq, M. Ibrahim, A. E. Kuznetsov, M. A. Assiri, and M. Y. Sameeh. Preparation, crystal structure, supramolecular assembly, and DFT studies of two organic salts bearing pyridine and pyrimidine. ACS Omega, 2023, 8(28), 25034-25047. https://doi.org/10.1021/acsomega.3c01659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Q. M. Aliyeva, M. N. Tahir, M. Ashfaq, K. S. Munawar, S. Y. Rahmanova, U. M. Hasanova, A. A. Rustamova, H. F. Mammadova, and E. M. Movsumov. Nickel(II) coordination polymer using pyrazine linkers and phthalate counter-anion: Synthesis, crystal structure, Hirshfeld surface and voids analysis. J. Struct. Chem., 2023, 64(6), 995-1006. https://doi.org/10.1134/S0022476623060045

    Article  CAS  Google Scholar 

  52. M. N. Tahir, M. Ashfaq, A. Ali, C. H. Lai, B. R. Rao, I. A. Shahid, and K. S. Munawar. Synthesis, SC XRD based structure elucidation, supramolecular assembly exploration via Hirshfeld surface analysis, computational and QTAIM study of functionalized anilide. Acta Chim. Slov., 2023, 281-293. https://doi.org/10.17344/acsi.2023.8108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kansiz.

Ethics declarations

The author of this work declares that he has no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 118974.https://doi.org/10.26902/JSC_id118974

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansiz, S. Investigating the Structural and Surface Properties of Copper and Nickel Complexes Fluorine-Based Salen Type Schiff Bases. J Struct Chem 64, 2295–2310 (2023). https://doi.org/10.1134/S0022476623120028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120028

Keywords

Navigation