Skip to main content
Log in

Zn(II), Cd(II), and Pd(II) Complexes with a 1,10-Phenanthroline Derivative Bearing Diisopropylidene Glucose: Synthesis, Structure, Properties

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Complexes [Cd4L4Cl8]·2H2O (I), ZnLCl2 (II), and PdLCl2·CH2Cl2 (III) (L = chiral derivative of 1,10-phenanthroline bearing diisopropylidene glucose) are synthesized. Single crystals of [Cd4L4Cl8] (IV) are prepared. According to the XRD data, the crystal structure of IV consists of molecules of the tetranuclear complex; the coordination number of two terminal and two central Cd2+ ions is 5 (Cl2N3) and 6 (Cl4N2), respectively. In the structure of IV, the L ligand is a bidentate cyclic ligand; Cl atoms exhibit both bridging and monodentate ligand functions. Complexes I–III are characterized by powder XRD and IR spectroscopy. According to the powder XRD data, I is isostructural to IV. Photophysical properties of solid samples of L, I, II are studied. Compound L exhibits excitation-wavelength dependent emission, the excited state lifetimes varying within nano- and microsecond regions. Complexes I and II exhibit ligand-centered photoluminescence. The luminescence quantum yields are as high as 15%. Cytotoxic properties of L, cadmium chloride, and I–III solutions are studied on the human laryngeal carcinoma cell line Hep2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. O. A. Zalevskaya, Y. A. Gur′eva, and A. V. Kutchin. Terpene ligands in the coordination chemistry: Synthesis of metal complexes, stereochemistry, catalytic properties and biological activity. Russ. Chem. Rev., 2019, 88, 979. https://doi.org/10.1070/RCR4880.

    Article  CAS  Google Scholar 

  2. S. Sharma, M. Chauhan, A. Jamsheera, S. Tabassum, and F. Arjmand. Chiral transition metal complexes: Synthetic approach and biological applications. Inorg. Chim. Acta, 2017, 458, 8. https://doi.org/10.1016/j.ica.2016.12.011

    Article  CAS  Google Scholar 

  3. T. Wu, X.-Z. You, and P. Boun. Applications of chiroptical spectroscopy to coordination compounds. Coord. Chem. Rev., 2015, 284, 1. https://doi.org/10.1016/j.ccr.2014.09.012

    Article  CAS  Google Scholar 

  4. P. Gerbier, N. Domingo, J. Gómez-Segura, D. Ruiz-Molina, D. B. Amabilino, J. Tejada, B. E. Williamson, and J. Veciana. Chiral, single-molecule nanomagnets: Synthesis, magnetic characterization and natural and magnetic circular dichroism. J. Mater. Chem., 2004, 14, 2455. https://doi.org/10.1039/B403062A

    Article  CAS  Google Scholar 

  5. K. Inoue, S. Ohkoshi, and H. Imai. Chiral molecule-based magnets. In: Magnetism: Molecules to Materials V / Eds. J. S. Miller and M. Drillon. Weinheim, Gemany: Wiley VCH, 2004, 41-70. https://doi.org/10.1002/3527604383.ch2

    Article  Google Scholar 

  6. N. C. Lim, H. C. Freake, and C. Bruckner. Illuminating zinc in biological systems. Chem. Eur. J., 2005, 11, 38. https://doi.org/10.1002/chem.200400599

    Article  CAS  Google Scholar 

  7. Yu. A. Zhdanov and Yu. E. Alekseev. Basic achievements in the coordination chemistry of modified monosaccharides. Russ. Chem. Rev., 2002, 71, 969. https://doi.org/10.1070/RC2002v071n11ABEH000758

    Article  CAS  Google Scholar 

  8. T. Lehnert, G. Özüduru, H. Grugel, F. Albrecht, S. M. Telligmann, and M. M. K. Boysen. More than just sweet - sugar-derived stereodifferentiating agents for asymmetric synthesis. Synthesis, 2011, 17, 2685. https://doi.org/10.1055/s-0030-1260143

    Article  CAS  Google Scholar 

  9. V. Benessere, R. del Litto, A. de Roma, and F. Ruffo. Carbohydrates as building blocks of privileged ligands. Coord. Chem. Rev., 2010, 254, 390. https://doi.org/10.1016/j.ccr.2009.05.001

    Article  CAS  Google Scholar 

  10. S. Woodward, M. Diéguez, and O. Pàmies. Use of sugar-based ligands in selective catalysis: Recent developments. Coord. Chem. Rev., 2010, 254, 2007. https://doi.org/10.1016/j.ccr.2010.03.005

    Article  CAS  Google Scholar 

  11. N. J. Williams, W. Gan, J. H. Reibenspies, and R. D. Hancock. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): Metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study. Inorg. Chem., 2009, 48, 1407. https://doi.org/10.1021/ic801403s

    Article  PubMed  CAS  Google Scholar 

  12. G. Accorci, A. Listorti, K. Yoosaf, and N. Armaroli. 1,10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev., 2009, 38, 1690. https://doi.org/10.1039/b806408n

    Article  PubMed  CAS  Google Scholar 

  13. A. Vogler and H. Kunkely. Luminescent metal complexes: Diversity of excited states. Top. Curr. Chem., 2001, 213, 143. https://doi.org/10.1007/3-540-44447-5_3

    Chapter  Google Scholar 

  14. B. Martínez-Valencia, N. D. Corona-Motolinia, E. Sánchez-Lara, B. L. Sánchez-Gaytán, M. Cerro-López, A. Mendoza, M. E. Castro, F. J. Meléndez-Bustamante, and E. González-Vergara. Synthesis and experimental-computational characterization of a copper/vanadium compound with potential anticancer activity. Crystals, 2020, 10, 492. https://doi.org/10.3390/cryst10060492

    Article  CAS  Google Scholar 

  15. M. I. Mohamed, Y. S. Shaban, M. R. Abd El-Motaled, A. A. Mohamed, A. M. M. Gaber, A. E.-S. Samir, and A.-J. Salih. Ternary copper(II) and nickel(II) chelates of 2,2′-bipyridyl and glycine: X-ray structures, kinetics, DNA binding, and cleavage activities. J. Mol. Struct., 2019, 1198, 126911. https://doi.org/10.1016/j.molstruc.2019.126911

    Article  CAS  Google Scholar 

  16. M. K. Koley, N. Duraipandy, M. S. Kiran, B. Varghese, P. T. Manoharan, and A. P. Koley. DNA binding and cytotoxicity of some Cu(II)/Zn(II) complexes containing a carbohydrazone Schiff base ligand along with 1,10-phenanthroline as a coligand. Inorg. Chim. Acta, 2017, 466, 538. https://doi.org/10.1016/j.molstruc.2019.126911

    Article  CAS  Google Scholar 

  17. R. Diana and B. Panunzi. The role of zinc(II) ion in fluorescence tuning of tridentate pincers: A review. Molecules, 2020, 25, 4984. https://doi.org/10.3390/molecules25214984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. E. Kimura and T. Koike. Recent development of zinc-fluorophores. Chem. Soc. Rev., 1998, 27, 179-184. https://doi.org/10.1039/A827179Z

    Article  CAS  Google Scholar 

  19. A. Terenzi, A. Lauria, A. M. Almerico, and G. Barone. Zinc complexes as fluorescent chemosensors for nucleic acids: New perspectives for a “boring” element. Dalton Trans., 2015, 44, 3527. https://doi.org/10.1039/C4DT02881C

    Article  PubMed  CAS  Google Scholar 

  20. X. Li, Y. Xie, and Z. Li. Diversity of luminescent metal complexes in OLEDs: Beyond traditional precious metals. Chem. - Asian J., 2021, 16, 2817. https://doi.org/10.1002/asia.202100784

    Article  PubMed  CAS  Google Scholar 

  21. N. A. Shekhovtsov and M. B. Bushuev. Anomalous emission of an ESIPT-capable zinc(II) complex: An interplay of TADF, TICT and anti-Kasha behavior. J. Photochem. Photobiol. A, 2022, 114195. https://doi.org/10.1016/j.jphotochem.2022.114195

    Article  CAS  Google Scholar 

  22. N. A. Shekhovtsov, K. A. Vinogradova, S. N. Vorobyova, A. S. Berezin, V. F. Plyusnin, D. Y. Naumov, N. V. Pervukhina, E. B. Nikolaenkova, A. Y. Tikhonov, and M. B. Bushuev. N-Hydroxy–N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(II) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1H-imidazole ESIPT-ligand. Dalton Trans., 2022, 51, 9818. https://doi.org/10.1039/D2DT01232D

    Article  PubMed  CAS  Google Scholar 

  23. N. A. Shekhovtsov, A. A. Ryadun, and M. B. Bushuev. Luminescence of a Zinc(II) complex with a protonated 1-hydroxy-1H-imidazole ESIPT ligand: Direct excitation of a tautomeric form. ChemistrySelect, 2021, 6, 12346. https://doi.org/10.1002/slct.202103695

    Article  CAS  Google Scholar 

  24. N. A. Shekhovtsov, E. B. Nikolaenkova, A. S. Berezin, V. F. Plyusnin, K. A. Vinogradova, D. Y. Naumov, N. V. Pervukhina, A. Y. Tikhonov, and M. B. Bushuev. Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(II) complexes with 1-hydroxy-1H-imidazole-based ligands. Dalton Trans., 2022, 51, 15166. https://doi.org/10.1039/D2DT02460H

    Article  PubMed  CAS  Google Scholar 

  25. M. B. Bushuev, Y. V. Gatilov, V. P. Krivopalov, and O. P. Shkurko. Tetra- and polynuclear cadmium(II) complexes with 3,5-bis(pyrimidin-2-yl)-4H-1,2,4-triazol-4-amine. Synthesis, polymorphism, lone pair–π interactions and luminescence. Inorg. Chim. Acta, 2015, 425, 182. https://doi.org/10.1016/j.ica.2014.10.017

    Article  CAS  Google Scholar 

  26. M. B. Bushuev, B. A. Selivanov, N. V. Pervukhina, D. Y. Naumov, M. I. Rakhmanova, L. A. Sheludyakova, A. Y. Tikhonov, and S. V. Larionov. Luminescent zinc(II) and cadmium(II) complexes based on 2-(4,5-dimethyl-1H-imidazol-2-yl)pyridine and 2-(1-hydroxy-4,5-dimethyl-1H-imidazol-2-yl)pyridine. Russ. J. Gen. Chem., 2012, 82, 1859. https://doi.org/10.1134/S1070363212110230

    Article  CAS  Google Scholar 

  27. S. E. Korolenko, K. P. Zhuravlev, V. I. Tsaryuk, A. S. Kubasov, V. V. Avdeeva, E. A. Malinina, A. S. Burlov, L. N. Divaeva, K. Yu. Zhizhin, and N. T. Kuznetsov. Crystal structures, luminescence, and DFT study of mixed-ligand Zn(II) and Cd(II) complexes with phenyl-containing benzimidazole derivatives with linker C=N or N=N group. J. Luminescence, 2021, 237, 118156. https://doi.org/10.1016/j.jlumin.2021.118156

    Article  CAS  Google Scholar 

  28. A. S. Burlov, V. G. Vlasenko, Y. V. Koshchienko, M. S. Milutka, D. A. Garnovskii, A. A. Kolodina, Y. V. Zubavichus, and M. A. Kiskin. Synthesis, structure, and photoluminescence of Zn(II) and Cd(II) complexes with N-[2-(diethylaminoalkyliminomethyl)-phenyl]-4-methylbenzenesulfonamides. Polyhedron, 2021, 208, 115400. https://doi.org/10.1016/j.poly.2021.115400

    Article  CAS  Google Scholar 

  29. K. S. Smirnova, E. V. Lider, S. G. Kozlova, T. S. Sukhikh, N. V. Kuratieva, I. P. Pozdniakov, and A. S. Potapov. Zinc complexes with 1-(1H-benzimidazol-1-ylmethyl)-1H-benzotriazole: the structure, quantum chemical calculations, and luminescence properties. Russ. Chem. Bull., 2020, 69, 1873. https://doi.org/10.1007/s11172-020-2973-6

    Article  CAS  Google Scholar 

  30. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: control of the parameters of the cationic porous framework and optical properties. Russ. Chem. Bull., 2022, 71, 83. https://doi.org/10.1007/s11172-022-3380-y

    Article  CAS  Google Scholar 

  31. E. A. Pershina, N. P. Burlutskiy, D. I. Pavlov, A. A. Ryadun, V. P. Fedin, and A. S. Potapov. Coordination polymers of cadmium with di(pyrazol-1-yl)alkane-4,4′-dicarboxylic acids: Synthesis, crystal structures, and luminescence properties. Russ. J. Coord. Chem., 2022, 48, 601. https://doi.org/10.1134/S1070328422100049

    Article  CAS  Google Scholar 

  32. P. V. Burlak, D. G. Samsonenko, K. A. Kovalenko, and V. P. Fedin. Synthesis, structure and luminescent properties of Zn(II) metal–organic frameworks constructed by flexible and rigid ligands. Polyhedron, 2022, 222, 115880. https://doi.org/10.1016/j.poly.2022.115880

    Article  CAS  Google Scholar 

  33. P. A. Demakov, A. A. Ryadun, and V. P. Fedin. Zn(II) coordination polymer with π-stacked 4,4′-bipyridine dimers: Synthesis, structure and luminescent properties. Polyhedron, 2022, 219, 115793. https://doi.org/10.1016/j.poly.2022.115793

    Article  CAS  Google Scholar 

  34. F. Sánchez-Férez, J. M. Rius-Bartra, J. A. Ayllón, T. Calvet, M. Font-Bardia, and J. Pons. Tuning photophysical properties by p-functional groups in Zn(II) and Cd(II) complexes with piperonylic acid. Molecules, 2022, 27, 1365. https://doi.org/10.3390/molecules27041365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. L. M. Loftus, E. C. Olson, D. J. Stewart, A. T. Phillips, K. Arumugam, T. M. Cooper, J. E. Haley, and T. A. Grusenmeyer. Zn coordination and the identity of the halide ancillary ligand dramatically influence the excited-state dynamics and bimolecular reactions of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline. Inorg. Chem., 2021, 60, 16570. https://doi.org/10.1021/acs.inorgchem.1c02484

    Article  PubMed  CAS  Google Scholar 

  36. V. Ferraro, F. Baggio, J. Castro, and M. Bortoluzzi. Green phosphorescent Zn(II) halide complexes with N,N,N′,N′-tetramethyl-P-indol-1-ylphosphonic diamide as ligand. Eur. J. Inorg. Chem., 2022, e202200119. https://doi.org/10.1002/ejic.202200119

    Article  Google Scholar 

  37. T. E. Kokina, Yu. P. Ustimenko, M. I. Rakhmanova, L. A. Sheludyakova, A. M. Agafontsev, P. E. Plyusnin, A. V. Tkachev, and S. V. Larionov. Luminescent complexes of Zn(II) and Cd(II) with chiral ligands containing 1,10-phenanthroline and natural monoterpenoids (+)-3-carene or (+)-limonene fragments. Russ. J. Gen. Chem., 2019, 89, 87. https://doi.org/10.1134/S107036321901016X

    Article  CAS  Google Scholar 

  38. T. E. Kokina, M. I. Rakhmanova, N. A. Shekhovtsov, L. A. Glinskaya, V. Y. Komarov, A. M. Agafontsev, A. Y. Baranov, P. E. Plyusnin, L. A. Sheludyakova, A. V. Tkachev, and M. B. Bushuev. Luminescent Zn(II) and Cd(II) complexes with chiral 2,2′-bipyridine ligands bearing natural monoterpene groups: synthesis, speciation in solution and photophysics. Dalton Trans., 2020, 49(22), 7552. https://doi.org/10.1039/D0DT01438A

    Article  PubMed  CAS  Google Scholar 

  39. S. V. Larionov, Y. A. Bryleva, L. A. Glinskaya, V. F. Plyusnin, A. S. Kupryakov, A. M. Agafontsev, A. V. Tkachev, A. S. Bogomyakov, D. A. Piryazev, and I. V. Korolkov. Ln(III) complexes (Ln = Eu, Gd, Tb, Dy) with a chiral ligand containing 1,10-phenanthroline and (–)-menthol fragments: synthesis, structure, magnetic properties and photoluminescence. 2017, 46(34), 11440. https://doi.org/10.1039/C7DT01536D

    Article  PubMed  CAS  Google Scholar 

  40. Y. A. D. A. L. A. A. M. Agafontsev, M. I. and A. V. Synthesis, structure, and photoluminescent properties of lanthanide(III) complexes with a ligand based on 1,10-phenanthroline and borneol. , 2020, 61(11), 1810. https://doi.org/10.1134/S0022476620110141

    Article  CAS  Google Scholar 

  41. A. P. Krapcho and J. B. Lanza. Improved synthesis of 2-chloro- and 2,9-dichloro-1,10-phenanthrolines. J. Org. Prep. Proc. Int., 2007, 39(6), 603. https://doi.org/10.1080/00304940709458644

    Article  CAS  Google Scholar 

  42. K. P. R. Kartha. Iodine, a novel catalyst in carbohydrate reactions I. O-isopropylidination of carbohydrates. Tetrahedron Lett., 1986, 27(29), 415. https://doi.org/10.1016/S0040-4039(00)84810-8

    Article  CAS  Google Scholar 

  43. APEX2 (V2013.6-2), SAINT (V8.32B) and SADABS-2012/1. Madison, Wisconsin, USA: Bruker Advanced X-ray Solutions, 2012-2013.

  44. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  45. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  46. O. V. Dolomanov, L. J. Bourhis, R. J Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  47. Cambridge Structural Database, Ver. 5.44. UK: University of Cambridge, 2023.

  48. A. W. Addison, T. N. Rao, and J. Reedijk. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., 1984, 7, 1349. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  49. H. L. T. Hong, T. N. Huu, A. T. D. Nhat, L. P. Quoc, T. T. Dang, H. Nguyen, and L. van Meervelt. Synthesis, crystal structures and anticancer activities of Cu(II), Zn(II) and Cd(II) complexes containing bis(2-pyridyl)-di(4-methoxyphenyl)ethane. J. Coord. Chem., 2022, 75(3/4), 335. https://doi.org/10.1080/00958972.2022.2051498

    Article  CAS  Google Scholar 

  50. H.-F. Chen, M.-J. Zhang, M.-S. Wang, W.-B. Yang, X.-G. Guo, and C.-Z. Lu. Synthesis, structure, photoluminescence and theoretical calculations on a novel tetranuclear Cd(II) complex based on (2,3-f)-pyrazino(1,10)phenanthroline-2,3-dicarboxylic acid. Inorg. Chem. Commun., 2012, 23, 123. https://doi.org/10.1016/j.inoche.2012.06.022

    Article  CAS  Google Scholar 

  51. C. Janiak. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans., 2000, (21), 3885-3896. https://doi.org/10.1039/b003010o

    Article  Google Scholar 

  52. S. Alvarez. A cartography of the van der Waals territories. Dalton Trans., 2013, 42(24), 8617. https://doi.org/10.1039/c3dt50599e

    Article  PubMed  CAS  Google Scholar 

  53. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York, USA: John Wiley and Sons, 1986.

  54. T. E. Kokina, L. A. Glinskaya, A. V. Tkachev, V. F. Plyusnin, Y. V. Tsoy, I. Yu. Bagryanskaya, E. S. Vasilyev, D. A. Piryazev, L. A. Sheludyakova, and S. V. Larionov. Chiral zinc(II) and cadmium(II) complexes with a dihydrophenanthroline ligand bearing (–)-α-pinene fragments: Synthesis, crystal structures and photophysical properties. Polyhedron, 2016, 117, 437. https://doi.org/10.1016/j.poly.2016.06.018

    Article  CAS  Google Scholar 

  55. G. Accorsi, A. Listorti, K. Yoosafa, and N. Armaroli. 1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev., 2009, 38(6), 1690. https://doi.org/10.1039/b806408n

    Article  PubMed  CAS  Google Scholar 

  56. T. E. Kokina, M. I. Rakhmanova, N. A. Shekhovtsov, L. A. Glinskaya, V. Y. Komarov, A. M. Agafontsev, A. Y. Baranov, P. E. Plyusnin, L. A. Sheludyakova, A. V. Tkachev, and M. B. Bushuev. Luminescent Zn(II) and Cd(II) complexes with chiral 2,2′-bipyridine ligands bearing natural monoterpene groups: synthesis, speciation in solution and photophysics. Dalton Trans., 2020, 49, 7552. https://doi.org/10.1039/d0dt01438a

    Article  PubMed  CAS  Google Scholar 

  57. J. A. Eremina, K. S. Smirnova, L. S. Klyusheva, A. S. Berezin, and E. V. Lider. Synthesis and cytotoxicity evaluation of copper(II) complexes with polypyridines and 5-benzyltetrazole. J. Mol. Struct., 2021, 1245, 131024. https://doi.org/10.1016/j.molstruc.2021.131024

    Article  CAS  Google Scholar 

  58. J. A. Eremina, K. S. Smirnova, L. S. Klyusheva, A. S. Berezin, and E. V. Lider. Synthesis and cytotoxicity evaluation of copper(II) complexes with polypyridines and 5-benzyltetrazole. J. Mol. Struct., 2021, 1245, 131024. https://doi.org/10.1016/j.molstruc.2021.131024

    Article  CAS  Google Scholar 

  59. J. A. Eremina, K. S. Smirnova, L. S. Klyusheva, A. S. Berezin, and E. V. Lider. Synthesis and cytotoxicity evaluation of copper(II) complexes with polypyridines and 5-benzyltetrazole. J. Mol. Struct., 2021, 1245, 131024. https://doi.org/10.1016/j.molstruc.2021.131024

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation. The studies were conducted within the State Assignment for N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences and Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences (No. 121031700321-3).

This work was conducted using the equipment of the Center for Collective Use “Proteomic Analysis” funded by the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2021-691) and the equipment of the Core Facilities Shared Research Facilities "High Technologies and Analytics of Nanosystems", Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kokina.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 119035.https://doi.org/10.26902/JSC_id119035

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokina, T.E., Agafontsev, A.M., Sizintseva, K.D. et al. Zn(II), Cd(II), and Pd(II) Complexes with a 1,10-Phenanthroline Derivative Bearing Diisopropylidene Glucose: Synthesis, Structure, Properties. J Struct Chem 64, 2311–2325 (2023). https://doi.org/10.1134/S002247662312003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662312003X

Keywords

Navigation