Skip to main content
Log in

Synthesis, Structure, and Mechanism of Half-Sandwich Ruthenium Complex Containing OrthoCarborane-1,2-Dithiolate Ligand and 1-Phenyl-2-Propyn-1-ol

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel complex (p-cymene)Ru(S2C2B10H9)(PhCH=CCH2OCH(Ph)C≡CH)·CH2Cl2 based on the ortho-carborane-1,2-dithiolate ligand and 1-phenyl-2-propyn-1-ol has been synthesized successfully and characterized by IR, NMR, MS, elemental analysis and single-crystal X-ray diffraction. The complex crystallizes in monoclinic system, space group P21/n with: a = 10.221(4) Å, b = 14.912(6) Å, c = 24.182(10) Å, α = 90.00°, β = 99.096(6)°, γ = 90.00°, C31H40B10Cl2ORuS2, Mr = 772.82, V = 3639(3) Å3, Dc = 1.410 g/cm3, Z = 4, F(000) = 1576, μ(MoKα) = 0.719 mm–1, R = 0.0600 and wR = 0.1561 for 5463 observed reflections (I > 2σ(I)). Structural analysis shows that there are the coordination of C=C bond, the formation of C–S bod, and metal-induced B–H activation with the formation of Ru–B bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

REFERENCES

  1. A. Marfavi, P. Kavianpour, and L. M. Rendina. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem., 2022, 6(7), 486-504. https://doi.org/10.1038/s41570-022-00400-x

    Article  PubMed  Google Scholar 

  2. A. F. Armstrong and J. F. Valliant. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton Trans., 2007, (38), 4240. https://doi.org/10.1039/b709843j

    Article  PubMed  Google Scholar 

  3. J. F. Valliant, K. J. Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein, and K. A. Stephenson. The medicinal chemistry of carboranes. Coord. Chem. Rev., 2002, 232(1/2), 173-230. https://doi.org/10.1016/s0010-8545(02)00087-5

    Article  CAS  Google Scholar 

  4. Z. Xie. Group 4 metallocenes incorporating constrained-geometry carboranyl ligands. Coord. Chem. Rev., 2006, 250(1/2), 259-272. https://doi.org/10.1016/j.ccr.2005.05.009

    Article  CAS  Google Scholar 

  5. Z.-J. Yao and G.-X. Jin. Transition metal complexes based on carboranyl ligands containing N, P, and S donors: Synthesis, reactivity and applications. Coord. Chem. Rev., 2013, 257(17/18), 2522-2535. https://doi.org/10.1016/j.ccr.2013.02.004

    Article  CAS  Google Scholar 

  6. X. Meng, F. Wang, and G.-X. Jin. Construction of M–M bonds in late transition metal complexes. Coord. Chem. Rev., 2010, 254(11/12), 1260-1272. https://doi.org/10.1016/j.ccr.2009.07.002

    Article  CAS  Google Scholar 

  7. Z. Wang, H. Ye, Y. Li, Y. Li, and H. Yan. Unprecedented boron-functionalized carborane derivatives by facile and selective cobalt-induced B–H activation. J. Am. Chem. Soc., 2013, 135(30), 11289-11298. https://doi.org/10.1021/ja4047075

    Article  PubMed  CAS  Google Scholar 

  8. M. Herberhold, H. Yan, W. Milius, and B. Wrackmeyer. Metal-induced B–H activation: Addition of acetylene, propyne, or 3-methoxypropyne to Rh(Cp*), Ir(Cp*), Ru(p-cymene), and Os(p-cymene) half-sandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolato ligand. Chem. - Eur. J., 2002, 8(2), 388-395. https://doi.org/10.1002/1521-3765(20020118)8:2<388::aid-chem388>3.0.co;2-u

    Article  PubMed  CAS  Google Scholar 

  9. M. A. Esteruelas, A. M. López, and M. Oliván. Osmium–carbon double bonds: Formation and reactions. Coord. Chem. Rev., 2007, 251(5/6), 795-840. https://doi.org/10.1016/j.ccr.2006.07.008

    Article  CAS  Google Scholar 

  10. R. Castarlenas, C. Vovard, C. Fischmeister, P.H. Dixneuf. Allenylidene-to-indenylidene rearrangement in arene–ruthenium complexes: A key step to highly active catalysts for olefin metathesis reactions. J. Am. Chem. Soc., 2006, 128(12), 4079-4089. https://doi.org/10.1021/ja0579762

    Article  PubMed  CAS  Google Scholar 

  11. B. Liu, H. Wang, H. Xie, B. Zeng, J. Chen, J. Tao, T. Bin Wen, Z. Cao, and H. Xia. Osmapyridine and osmapyridinium from a formal [4+2] cycloaddition reaction. Angew. Chem., Int. Ed., 2009, 48(30), 5430-5434. https://doi.org/10.1002/anie.200900998

    Article  CAS  Google Scholar 

  12. L. Gong, Y. Lin, T. Bin Wen, and H. Xia. Synthesis of coordinated η2-α,β-unsaturated ketone osmacycles from an osmium-coordinated alkyne alcohol complex. Organometallics, 2009, 28(4), 1101-1111. https://doi.org/10.1021/om800907v

    Article  CAS  Google Scholar 

  13. J. R. Hu, W. H. Chen, D. K. Nie, Y. H. Wang, and H. D. Ye. Reactivity of dinuclear ruthenium complex containing two 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligands toward HC≡CCH(OH)(CH3)2. Russ. J. Coord. Chem., 2016, 42(12), 783-788. https://doi.org/10.1134/s1070328416120034

    Article  CAS  Google Scholar 

  14. J. R. Hu and J. H. Wang. Synthesis and structural characterization of the ruthenium complexes based on ortho-carborane-1,2-diselenolate ligand and terminal alkynone. Russ. J. Inorg. Chem., 2022, 67(11), 1739-1744. https://doi.org/10.1134/s0036023622600654

    Article  CAS  Google Scholar 

  15. J. R. Hu, J. H. Wang, K. G. Jin, and C. P. Zhu. Synthesis and structural characterization of the ruthenium complex based on 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligand and FcCH(OH)C≡CH. Russ. J. Coord. Chem., 2020, 46(6), 437-442. https://doi.org/10.1134/s1070328420060019

    Article  CAS  Google Scholar 

  16. M. A. Bennett, T.-N. Huang, T. W. Matheson, A. K. Smith, S. Ittel, and W. Nickerson. (η6-Hexamethylbenzene)ruthenium complexes. In: Inorganic Syntheses, Vol. 21 / Ed. J.P. Fackler Jr. Inorganic Syntheses, Inc., 1982, 21, 74-78. https://doi.org/10.1002/9780470132524.ch16

    Chapter  Google Scholar 

  17. M. Herberhold, H. Yan, W. Milius, and B. Wrackmeyer. Metal-induced B–H activation. Addition of phenylacetylene to Cp*Rh-, Cp*Ir-, (p-cymene)Ru- and (p-cymene)Os halfsandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand. J. Organomet. Chem., 2000, 604(2), 170-177. https://doi.org/10.1016/s0022-328x(00)00221-7

    Article  CAS  Google Scholar 

  18. SMART (Version 5.0), SAINT (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Madison, Wisconsin, USA: Bruker AXS Inc., 2000.

  19. J. R. Hu, W. J. Zhang, L. H. Liu, and H. N. Peng. Synthesis, structure, and mechanism of half-sandwich ruthenium complexes based on ortho-carborane-1,2-dithiolate ligand and alkyne alcohol. Russ. J. Coord. Chem., 2014, 40(12), 954-958. https://doi.org/10.1134/s1070328414120057

    Article  CAS  Google Scholar 

  20. J. Hu, W. Dong, and J. Wang. Synthesis, structure, and mechanism of the isomers of ruthenium complexes based on HC≡CC(OH)(CH3)2 and ortho-carborane dithiolate ligands. Inorg. Chem. Commun., 2022, 143, 109722. https://doi.org/10.1016/j.inoche.2022.109722

    Article  CAS  Google Scholar 

  21. J. R. Hu and J. H. Wang. Reactivity of 16-electron (p-cymene)Ru half-sandwich complex containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligand with 1-ethynyl-1-cyclohexanol. J. Struct. Chem., 2022, 63(10), 1551-1557. https://doi.org/10.1134/s0022476622100018

    Article  CAS  Google Scholar 

  22. J. Hu, S. Sun, K. He, and Y. Wang. Synthesis and characterization of multinuclear ruthenium clusters assembled by terminal alkyne alcohols and ortho-carborane diselenolate ligands. J. Mol. Struct., 2022, 1263, 133198. https://doi.org/10.1016/j.molstruc.2022.133198

    Article  CAS  Google Scholar 

  23. D. Wu, Y. Li, L. Han, Y. Li, and H. Yan. Mixed-valent diruthenium half-sandwich complexes containing two chelating 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligands: Reactivity towards phenylacetylene, 1,4-diethynylbenzene, and ethynylferrocene. Inorg. Chem., 2008, 47(14), 6524-6531. https://doi.org/10.1021/ic800619z

    Article  PubMed  CAS  Google Scholar 

  24. E. Bustelo, M. Jiménez-Tenorio, M. C. Puerta, and P. Valerga. γ-Substituted vinylidene, chroman-2-ylidene, and hexahydrochromen-2-ylidene from ruthenium allenylidene/alkenylcarbyne complexes. Organometallics, 2007, 26(17), 4300-4309. https://doi.org/10.1021/om700431n

    Article  CAS  Google Scholar 

  25. K. Y. Ghebreyessus and J. H. Nelson. Reactions of [(η6-Me6C6)Ru(Ph2PCH–CH2)Cl2] with 1-ethynylcycloalkanols leading to methoxy-alkenyl carbenes via vinylvinylidene and/or allenylidene intermediates. Inorg. Chem. Commun., 2003, 6(8), 1044-1047. https://doi.org/10.1016/s1387-7003(03)00177-1

    Article  CAS  Google Scholar 

  26. Y. Quan and Z. Xie. Controlled functionalization of o-carborane via transition metal catalyzed B–H activation. Chem. Soc. Rev., 2019, 48(13), 3660-3673. https://doi.org/10.1039/c9cs00169g

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Hu.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 119203.https://doi.org/10.26902/JSC_id119203

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J.R., Zhao, S.Q., Wang, J.H. et al. Synthesis, Structure, and Mechanism of Half-Sandwich Ruthenium Complex Containing OrthoCarborane-1,2-Dithiolate Ligand and 1-Phenyl-2-Propyn-1-ol. J Struct Chem 64, 2343–2350 (2023). https://doi.org/10.1134/S0022476623120053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120053

Keywords

Navigation