Skip to main content
Log in

Study of Combustion of Titanium Particles Aimed at Generation of TiO2 Nanoparticles

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method is developed to produce large titanium monolithic burning particles with a diameter of 250–550 μm. The combustion of titanium particles in free fall in air is investigated. The characteristic times of the beginning of fragmentation, end of fragmentation, and end of burning as well as the laws of motion of particles (in particular, coordinate and velocity at the starting moment of fragmentation) are determined using video recording. The size of particles at which the fragmentation mode changes from “star” to “fir branch” is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. B. Zubkov, Space Metal. All about Titanium (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. A. A. Shidlovskii, Fundamentals of Pyrotechnics (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. G. Merzhanov and A. E. Sychev, On Self-Propagating High-Temperature Synthesis. http://www.ism.ac.ru/handbook/shsfr.htm. Accessed September 19, 2018.

  4. W. Pang, X. Fan, F. Zhao, H. Xu, W. Zhang, H. Yu, Y. Li, F. Liu, W. Xie, and N. Yan, Propellants, Explos., Pyrotech. 38 (6), 852 (2013). https://doi.org/10.1002/prep.201200182

    Article  CAS  Google Scholar 

  5. T. Matias, L. Duraes, A. Andrade-Campos, and R. Mendes, Prediction and experimental Al, Mg, Ti and Zr derived oxides and spinel formation by detonation, in Proc. 41st Int. Annu. Conf. of ICT “Energetic Materials for High Performance, Insensitive Munitions and Zero Pollution,” Karlsruhe, Germany, June 29–July 2, 2010 (Inst. Chem. Technol., Fraunhofer, 2010), p. 95.

  6. V. Weiser, J. Neutz, N. Eisenreich, E. Roth, H. Schneider, and S. Kelzenberg, Development and characterization of pyrotechnic compositions as counter measures against toxic clouds, in Proc. 36th Int. Annu. Conf. of ICT & 32nd Int. Pyrotechnics Seminar “Energetic Materials: Performance and Safety,” Karlsruhe, Germany, June 28–July 1, 2005 (Inst. Chem. Technol., Fraunhofer, 2005), p. 102.

  7. O. G. Glotov and V. E. Zarko, Formation of nanosized products in combustion of metal particles, in Energetic Nanomaterials: Synthesis, Characterization, and Application, Ed. by V. E. Zarko and A. A. Gromov (Elsevier, 2016), Chap. 11, p. 285. https://doi.org/10.1016/B978-0-12-802710-3.00011-8

    Book  Google Scholar 

  8. R. S. Zakharov and O. G. Glotov, Vestn. Novosibirsk. Gos. Univ. Ser. Fiz. 2 (3), 32 (2007).

    Google Scholar 

  9. O. G. Glotov, Combust., Explos. Shock Waves 49 (3), 299 (2013). https://doi.org/10.1134/S0010508213030064

    Article  Google Scholar 

  10. O. G. Glotov, Combust., Explos. Shock Waves 49 (3), 307 (2013). https://doi.org/10.1134/S0010508213030076

    Article  Google Scholar 

  11. I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, Combust. Flame 112 (4), 522 (1998). https://doi.org/10.1016/S0010-2180(97)00146-6

    Article  ADS  CAS  Google Scholar 

  12. E. Shafirovich, S. K. Teoh, and A. Varma, Combust. Flame 152 (1–2), 262 (2008). https://doi.org/10.1016/j.combustflame.2007.05.008

    Article  ADS  CAS  Google Scholar 

  13. N. S. Belousova, O. G. Glotov, and A. V. Guskov, Experimental study of combustion features of monolithic titanium particles, in Abstr. XII All-Russ. Conf. of Young Scientists “Problems of Mechanics: Theory, Experiment and New Technology,” Novosibirsk–Sheregesh, March 16–22, 2018, Ed. by V. V. Kozlov (Novosibirsk, 2018), p. 14.

  14. O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedotova, and A. D. Rychkov, Combust., Explos. Shock Waves 39 (5), 552 (2003). https://doi.org/10.1023/A:1026113902771

    Article  Google Scholar 

  15. O. G. Glotov and V. A. Zhukov, Combust., Explos. Shock Waves 44 (6), 662 (2008). https://doi.org/10.1007/s10573-008-0100-3

    Article  Google Scholar 

  16. V. V. Karasev, A. A. Onishchuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, and C. J. Tsai, Combust., Explos. Shock Waves 42 (6), 649 (2006). https://doi.org/10.1007/s10573-006-0098-3

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Belousova, O. G. Glotov or A. V. Guskov.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousova, N.S., Glotov, O.G. & Guskov, A.V. Study of Combustion of Titanium Particles Aimed at Generation of TiO2 Nanoparticles. Tech. Phys. 68, 322–327 (2023). https://doi.org/10.1134/S106378422370007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422370007X

Keywords:

Navigation