Skip to main content
Log in

Dust acoustic shock waves in nonuniform dusty plasmas with kappa-distributed ions and electrons, nonadiabatic dust charge fluctuation and dust size distribution

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The propagation characteristics of dust acoustic shock waves have been investigated in an unmagnetized nonuniform dusty plasma containing dust grains with nonadiabatic changed charges and different size, electrons and ions modeled by kappa distribution. The modified Korteweg–de Vries Burgers equation is derived by using the standard reductive perturbation technique. Numerical and theoretical analyses show that there are two different shock structures, that is, oscillatory shock structures and monotonous shock structures, in system. The results show that the dust size with power law distribution and kappa parameters have an important influence on dust acoustic shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L P Zhang Technol. 22 034001 (2020)

    Google Scholar 

  2. P Chatterjee J. Phys 86 529 (2012)

    Google Scholar 

  3. D N Polyakov Eng. Appl. Electrochem 51 143 (2015)

    Article  Google Scholar 

  4. E Thomas Jr Plasmas 11 L37 (2004)

    Article  Google Scholar 

  5. A Murad J. Phys. 49 79 (2019)

    Google Scholar 

  6. W F El-Taibany Plasmas 14 032304 (2007)

    Article  ADS  Google Scholar 

  7. L P Zhang J. Phys 94 1111 (2020)

    Google Scholar 

  8. G X Wan and W S Duan Plasmas 13 082107 (2006)

    Article  ADS  Google Scholar 

  9. M Ishak Boushaki, R Annou and B Ferhat Phys.Plasmas 8 5040 (2001)

  10. L Spitzer Jr ApJ 93 369 (1941)

  11. M Tribeche M Bacha Phys. Plasmas 17 073701 (2010)

    Article  ADS  Google Scholar 

  12. R Denra and S Paul U Ghosh and S Sarkar J Plasma Phys 84 905840507 (2018)

    Article  Google Scholar 

  13. F Li and O Havnes Phys. Rev. E 64 066407 (2001)

    Article  ADS  Google Scholar 

  14. W Lin Rev. E 100 043203 (2019)

    Google Scholar 

  15. Y Saitou, Y Nakamura, T Kamimura and O Ishihara Phys. Rev. Lett. 108 (2012)

  16. N S Saini and Shalini Astrophys. Space Sci. 346 155 (2013)

    Article  ADS  Google Scholar 

  17. B S Chahal J. Theor. Appl. Phys. 11 181 (2017)

    Article  ADS  Google Scholar 

  18. I Kourakis and P K Shukla Phys. Plasmas 10 3459 (2003)

    Article  ADS  Google Scholar 

  19. H R Pakzad Space Sci 353 543 (2014)

    Article  ADS  Google Scholar 

  20. V Pierrard and M Lazar Sol Phys 267 153 (2010)

    Article  ADS  Google Scholar 

  21. M Shahmansouri and H Alinejad Astrophys. Space Sci. 343 257 (2013)

    Article  ADS  Google Scholar 

  22. D D Barbosa and W S Kurth J. Geophys. Res. Space Physics 98 9351 (1993)

    Article  Google Scholar 

  23. H Hasnain W Masood and A Mahmood Phys Scr 90 035606 (2015)

    Article  Google Scholar 

  24. T K Baluku and M A Hellberg Phys. Plasmas 15 123705 (2008)

    Article  ADS  Google Scholar 

  25. M A Hellberg, R L Mace and T K Baluku Plasmas 16 094701 (2009)

    Article  ADS  Google Scholar 

  26. M Tribeche and M Bacha Phys. Plasmas 17 073701 (2010)

    Article  ADS  Google Scholar 

  27. N S Saini J. Geophys. Res. Space Phys. 121 5944 (2016)

    Article  ADS  Google Scholar 

  28. R Denra S Paul and S Sarkar AIP Adv. 6 125045 (2016)

    Article  Google Scholar 

  29. J E Allen Phys Scr 45 497 (1992)

  30. L P Zhang and J K Xue Physics of Plasmas 15 (2008)

  31. S A Elwakil and M A Zahran Space Res. 48 1067 (2011)

    Article  ADS  Google Scholar 

  32. R Dickman and G Stell Phys. Rev. Lett. 77 996 (1996)

    Article  ADS  Google Scholar 

  33. W F El-Taibany Phys. Plasmas 20 093701 (2013)

  34. H Washimi and T Taniuti Phys. Rev. Lett. 17 996 (1966)

  35. S V Singh, N N Rao and J Plasma Phys 60 541 (1998)

    Google Scholar 

  36. A A Mamun, P K Shukla and J Plasma Phys 77 437 (2011)

    Google Scholar 

  37. C K Goertz and L H Shan Geophys. Res. Lett 15 84 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.P., Zheng, J.Q. Dust acoustic shock waves in nonuniform dusty plasmas with kappa-distributed ions and electrons, nonadiabatic dust charge fluctuation and dust size distribution. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03036-9

Keywords

Navigation