Skip to main content
Log in

Design and analysis of spider-web photonic crystal fiber in the terahertz regime

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a novel photonic crystal fiber (PCF) design having a spider-web (SW) cladding. The finite element method (FEM)-based COMSOL Multiphysics software has been used to investigate the guiding properties and performance of the fiber in the terahertz radiation regime. Detailed numerical analyses ensure that proposed fiber design possesses a low confinement loss (\(\sim 10^{ - 17} {\text{cm}}^{ - 1} ) \)) and low effective material loss (EML). The high core power fraction of \(99\%\) and the effective mode area of \(1.06 \times 10^{ - 5} {\text{m}}^{2} \) make this fiber an exception. V-parameter confirms the single-mode behavior of fiber over 0.1–3.0-THz frequency range. Thus, we can say that the proposed fiber can be useful in various applications of terahertz propagation such as broadband transmission, biosensors, and chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W Biao, C Jia, J Yang, Z Di, J Yao and J Zhang IEEE Photo. J. 13 1 (2021)

    Article  Google Scholar 

  2. M K Khodzitsky et al. J. Phys. Conf. Ser. 8 76 (2021)

    Google Scholar 

  3. A A Rifat et al. IEEE Photon. Technol. Lett. 27 1628 (2015)

    Article  ADS  Google Scholar 

  4. M F Arif, S Asaduzzaman, M J Biddut and K Ahmed Int. J. Technol (2016)

  5. S Shuvo, M Abdullah-Al-Shafi, A S Sikder, M S Hossain and M M Azad Sens. Bio-Sens. Res. 31 100393 (2021)

    Article  Google Scholar 

  6. G K M Hasanuzzaman, S Rana and M S Habib IEEE Photon. Technol. Lett. 28 899 (2016)

    Article  ADS  Google Scholar 

  7. W Zhiqing, Z Shi, H Xia, X Zhou, Q Deng, J Huang, X Jiang and W Wu IEEE Photon. J. 8 1 (2016)

    Google Scholar 

  8. M Abdullah-Al-Shafi, N Akter, S Sen and M S Hossain Optik 243 167519 (2021)

    Article  ADS  Google Scholar 

  9. A Huseyin Optik 125 6274 (2014)

    Article  Google Scholar 

  10. A Kawsar and M Morshed Sens. Bio-Sens. Res. 7 687 (2016)

    Google Scholar 

  11. M S Islam, J Sultana, A Dinovitser, M Faisal, M R Islam, W-H Brian and D Abbott Appl. Opt. 57 336 (2018)

    Article  Google Scholar 

  12. Z Yani, L Xue, D Qiao and Z Guang Optik 207 163817 (2020)

    Article  ADS  Google Scholar 

  13. M Abdullah-Al-Shafi and S Sen Sens. Bio-Sens. Res. 29 100372 (2020)

    Article  Google Scholar 

  14. M A M Eid, M A Habib, M S Anower and A N Z Rashed Braz. J. Phys. 51 1017 (2021)

    Article  ADS  Google Scholar 

  15. J R Habib, B A Al-Mamun, N Abdullah-Al, S Faragallah Osama, Md Baz, M A Eid Mahmoud and A N Z Rashed Opt. Rev. 28 (2021)

  16. T Danh, G Sigel and B Bendow J. Lightwave Technol. 2 566 (1984)

    Article  ADS  Google Scholar 

  17. L Shaopeng, H Liu, N Huang and Q Sun J. Opt. 16 105102 (2014)

    Article  ADS  Google Scholar 

  18. M S Islam, J Sultana, A A Rifat, A Dinovitser, N B H Brian and D Abbott IEEE Sens. J. 18 4073 (2018)

    Article  ADS  Google Scholar 

  19. K Shubi Felix, Z Ouyang and X Jin IEEE Photon. Technol. Lett. 25 1454 (2013)

    Article  ADS  Google Scholar 

  20. A Patrick Atsu and E Kofi Akowuah Sci. Rep. 10 21182 (2020)

    Article  Google Scholar 

  21. M S Islam, J Sultana, K Ahmed, M Rakibul-Islam, A Dinovitser, N W H Brian and D Abbott IEEE Sens. J. 18 575 (2017)

    Article  ADS  Google Scholar 

  22. M Saiful, J Sultana, A Dinovitser, N W H Brian and D Abbott Opt. Commun. 413 2426 (2018)

    Google Scholar 

  23. W Zhiqing, X Zhou, H Xia, Z Shi, J Huang, X Jiang and W Wu Appl. Opt. 56 2288 (2017)

    Article  ADS  Google Scholar 

  24. M Midrio, M P Singh and C G Someda J. Lightwave Technol 18 1031 (2000)

    Article  ADS  Google Scholar 

  25. Z Zhu and T G Brown Opt. Express 8 547 (2001)

    Article  ADS  Google Scholar 

  26. A Kawsar et al. Appl. Opt. 56 3477 (2017)

    Article  ADS  Google Scholar 

  27. A Ghatak and K Thyagarajan. An Introduction to Fiber Optics (Cambridge University Press) (1998)

  28. M I Islam, K Ahmed, S Asaduzzaman, B Kumar Paul, T Bhuiyan, S Sen, M S Islam and S Chowdhury Sens. Bio-Sens. Res. 13 55 (2017)

    Article  Google Scholar 

  29. H El Hamzaoui et al. Opt. Express 28 29751 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Delhi Technological University, Bawana Road, New Delhi, Delhi 110042, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Sharma, S. & Kumar, A. Design and analysis of spider-web photonic crystal fiber in the terahertz regime. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03038-7

Keywords

Navigation