Skip to main content
Log in

Numerical modeling and simulation of material extrusion-based 3-D printing processes with a material point method framework

  • S.I. : Welding processes
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this study, a numerical framework based on the material point method is presented for the simulation of material extrusion (MEX)-based 3-D printing processes. The melt flow during material extrusion is assumed to be viscous flow including phase changes. To apply the free surface boundary conditions, the framework utilizes the level set method to track the free surface and the ghost fluid method for the application of the boundary conditions. For validation, three representative problems are first investigated to show the versatility of the model. Then, the numerical framework is adapted for the simulation of material extrusion (MEX) based 3-D printing processes. An in-depth parametric study is presented to show how printing parameters affect the overall extruded printing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., et al.: Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31, 1231–1282 (2019)

    Article  ADS  Google Scholar 

  2. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2185), 20150790 (2016)

  3. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: Numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  4. Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Cosmo, F.D.: Metamaterials with relative displacements in their microstructure: Technological challenges in 3d printing, experiments and numerical predictions. Continuum Mech. Thermodyn. 31, 1015–1034 (2019)

    Article  ADS  Google Scholar 

  5. Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A lagrangian hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to timoshenko theory. Int. J. Non-Linear Mech. 123, 103481 (2020)

    Article  ADS  Google Scholar 

  6. Turco, E., Barchiesi, E., dell’Isola, F.: Nonlinear dynamics of origami metamaterials: Energetic discrete approach accounting for bending and in-plane deformation of facets. Z. Angew. Math. Phys. 74(1), 26 (2023)

    Article  MathSciNet  Google Scholar 

  7. Guo, N., Leu, M.C.: Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 8(3), 215–243 (2013)

    Article  Google Scholar 

  8. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C., Shin, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 69, 65–89 (2015)

    Article  Google Scholar 

  9. Huang, Y., Leu, M.C., Mazumder, J., Donmez, A.: Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 137(1), 014001 (2015)

    Article  Google Scholar 

  10. Bikas, H., Stavropoulos, P., Chryssolouris, G.: Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol. 83(1–4), 389–405 (2016)

    Article  Google Scholar 

  11. Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9(4), 252–264 (2003)

    Article  Google Scholar 

  12. Zhang, Y., Chou, Y.: Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(10), 1663–1671 (2006)

    Article  Google Scholar 

  13. Kantaros, A., Karalekas, D.: Fiber bragg grating based investigation of residual strains in abs parts fabricated by fused deposition modeling process. Mater. Des. 50, 44–50 (2013)

    Article  Google Scholar 

  14. Peng, A., Xiao, X., Yue, R.: Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int. J. Adv. Manuf. Technol. 73(1–4), 87–100 (2014)

    Article  Google Scholar 

  15. Hwang, S., Reyes, E.I., Moon, K.-S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  ADS  Google Scholar 

  16. Xia, H., Lu, J., Dabiri, S., Tryggvason, G.: Fully resolved numerical simulations of fused deposition modeling. part i-fluid flow. arXiv preprint arXiv:1711.05940 (2017)

  17. Xia, H., Lu, J., Tryggvason, G.: Fully resolved numerical simulations of fused deposition modeling. part ii-solidification, residual stresses, and modeling of the nozzle. arXiv preprint arXiv:1711.07094 (2017)

  18. Comminal, R., Serdeczny, M.P., Pedersen, D.B., Spangenberg, J.: Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 20, 68–76 (2018)

    Google Scholar 

  19. Fitzharris, E.R., Watanabe, N., Rosen, D.W., Shofner, M.L.: Effects of material properties on warpage in fused deposition modeling parts. Int. J. Adv. Manuf. Technol. 95(5–8), 2059–2070 (2018)

    Article  Google Scholar 

  20. Özen, A., Abali, B.E., Völlmecke, C., Gerstel, J., Auhl, D.: Exploring the role of manufacturing parameters on microstructure and mechanical properties in fused deposition modeling (FDM) using PETG. Appl. Compos. Mater. 28(6), 1799–1828 (2021)

    Article  ADS  Google Scholar 

  21. Özen, A., Ganzosch, G., Barchiesi, E., Auhl, D.W., Müller, W.H.: Investigation of deformation behavior of PETG-FDM-printed metamaterials with pantographic substructures based on different slicing strategies. Compos. Adv. Mater. 30, 26349833211016476 (2021)

    Google Scholar 

  22. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)

    Article  ADS  Google Scholar 

  24. York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point method. Int. J. Numer. Meth. Eng. 48(6), 901–924 (2000)

    Article  Google Scholar 

  25. Gilmanov, A., Acharya, S.: A hybrid immersed boundary and material point method for simulating 3d fluid-structure interaction problems. Int. J. Numer. Meth. Fluids 56(12), 2151–2177 (2008)

    Article  Google Scholar 

  26. Bardenhagen, S., Brackbill, J., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

    Article  ADS  Google Scholar 

  27. Schreyer, H., Sulsky, D., Zhou, S.-J.: Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)

    Article  ADS  Google Scholar 

  28. Zhang, D.Z., Zou, Q., VanderHeyden, W.B., Ma, X.: Material point method applied to multiphase flows. J. Comput. Phys. 227(6), 3159–3173 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhang, H., Wang, K., Chen, Z.: Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput. Methods Appl. Mech. Eng. 198(17–20), 1456–1472 (2009)

    Article  ADS  Google Scholar 

  30. Li, F., Pan, J., Sinka, C.: Modelling brittle impact failure of disc particles using material point method. Int. J. Impact Eng 38(7), 653–660 (2011)

    Article  Google Scholar 

  31. Lian, Y., Zhang, X., Zhou, X., Ma, S., Zhao, Y.: Numerical simulation of explosively driven metal by material point method. Int. J. Impact Eng 38(4), 238–246 (2011)

    Article  Google Scholar 

  32. Burghardt, J., Brannon, R., Guilkey, J.: A nonlocal plasticity formulation for the material point method. Comput. Methods Appl. Mech. Eng. 225, 55–64 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chen, Z., Jiang, S., Gan, Y., Liu, H., Sewell, T.D.: A particle-based multiscale simulation procedure within the material point method framework. Comput. Part. Mech. 1(2), 147–158 (2014)

    Article  Google Scholar 

  34. Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free surface flow. J. Comput. Phys. 330, 92–110 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5(6), 477–496 (2004)

    Google Scholar 

  36. Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Meth. Eng. 86(12), 1435–1456 (2011)

    Article  MathSciNet  Google Scholar 

  37. Gan, Y., Sun, Z., Chen, Z., Zhang, X., Liu, Y.: Enhancement of the material point method using B-spline basis functions. Int. J. Numer. Meth. Eng. 113(3), 411–431 (2018)

    Article  MathSciNet  Google Scholar 

  38. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  39. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Giorgio, I.: A variational formulation for one-dimensional linear thermoviscoelasticity. Math. Mech. Complex Syst. 9(4), 397–412 (2022)

    Article  MathSciNet  Google Scholar 

  41. Chen, L.: Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension. PhD thesis, University of Alaska Fairbanks (2013)

Download references

Acknowledgements

M. E. Yildizdag gratefully acknowledges the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK), under the scholarship program BIDEB 2213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erden Yildizdag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildizdag, M.E. Numerical modeling and simulation of material extrusion-based 3-D printing processes with a material point method framework. Continuum Mech. Thermodyn. (2023). https://doi.org/10.1007/s00161-023-01273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-023-01273-1

Keywords

Navigation