Skip to main content
Log in

Efficacy of plant extracts in growth promotion and onion purple blotch management: Unveiling metabolite fingerprinting of promising neem leaf extracts through GC MS

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Onion is affected by several biotic and abiotic stresses. This study aimed to evaluate the impact of onion seed priming with different plant extracts. The results show that neem leaf extract treated seeds exhibited the highest mean seedling establishment (71.50 per cent), seedling length (11.21 cm), seedling dry weight (15.88 mg) and seedling vigour indices (800.70 and 1135.27). The biochemical analysis of primed seedlings showed significant enhancement in enzymatic and non-enzymatic antioxidants. Purple blotch caused by Alternaria porri is the most important foliar disease of onion leading to significant losses. The evaluation of plant extracts against Alternaria porri showed that neem leaf extract at a concentration of 25 per cent inhibits mycelial growth of pathogen by 81.18 per cent. The GC MS analysis of the crude extract of neem indicated the presence of forty different chemical compounds, among which the main components included Benzene, 1,4-bis (phenylmethyl)- (15.05%), Naphthalene, 1,6-dimethyl- (10.98%), 3-(2,4-Dimethoxyphenyl) butan-2-one (8.63%) and Phytol (7.99%). Evaluation of the four promising botanicals viz., neem, congress grass, turmeric and ginger under field conditions indicated foliar sprays of neem leaf extract to be effective in both managing purple blotch disease (23.08 per cent disease management) and enhancing yield attributes (5.24 per cent seed yield increase). This study establishes the antimycotic and plant growth promoting potential of neem leaf extract for managing onion purple blotch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Science, 13(6), 630–633.

    Article  Google Scholar 

  • Abdalla, M. M. (2015). The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. African Journal of Crop Science, 3(2), 116–22.

  • Abifah, S. N., Suryaminarsih, P. (2023). The Effectiveness of Vegetable Neem Leaf Pesticides Against Purple Spot Disease on Onion Plants in The Rain Season. Nusantara Science and Technology Proceedings, 65–70.

  • Ali, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/j.bcab.2020.101884

    Article  CAS  Google Scholar 

  • Arif, Y., Bajguz, A., & Hayat, S. (2023). Moringa oleifera extract as a natural plant biostimulant. Journal of Plant Growth Regulation, 42(3), 1291–1306. https://doi.org/10.1007/s00344-022-10630-4

    Article  CAS  Google Scholar 

  • Ayyandurai, M., Akila, R., Manonmani, K., Mini, M. L., Vellaikumar, S., Brindhadevi, S., & Theradimani, M. (2022). Combined application of Trichoderma longibrachiatum T (SP)-20 and Trichoderma asperellum T (AR)-10 in the management of stem rot of groundnut. Legume Research-An International Journal, 46(2), 215–221. https://doi.org/10.18805/LR-4781

    Article  Google Scholar 

  • Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5, 804. https://doi.org/10.3389/fpls.2014.00804

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray, H. G., Thorpe, W. (1954). Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Analysis, 27-52. https://doi.org/10.1002/9780470110171.ch2

  • Buono, D., Bartucca, M. L., Ballerini, E., Senizza, B., Lucini, L., Trevisan, M. (2021). Physiological and Biochemical Effects of an Aqueous Extract of Lemna minor L. as a Potential Biostimulant for Maize. Journal of Plant Growth Regulation, 1–10. https://doi.org/10.1007/s00344-021-10491-3

  • Byrum, J. R., & Copeland, L. O. (1995). Variability in vigour testing of maize (Zea mays L.) seed. Seed Science and Technology, 23, 543–549.

    Google Scholar 

  • Ceccarelli, A. V., Miras-Moreno, B., Buffagni, V., Senizza, B., Pii, Y., Cardarelli, M., Rouphael, Y., Colla, G., & Lucini, L. (2021). Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants, 10(2), 326. https://doi.org/10.3390/plants10020326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu, K. Y., Chuang, S. J., & Sung, J. M. (2006). Both anti-oxidation and lipid-carbohydrate conversion enhancements are involved in priming-improved emergence of Echinacea purpurea seeds that differ in size. Scientia Horticulturae, 108(2), 220–226. https://doi.org/10.1016/j.scienta.2006.01.019

    Article  CAS  Google Scholar 

  • Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037

    Article  CAS  Google Scholar 

  • Dawood, M. G., El-Awadi, E. K. G. A., & Sadak, M. S. (2020). Physiological effect of aqueous seed extract of fenugreek on productivity and grain quality of wheat plant. Asian Journal of Applied Sciences, 13, 107–113.

    Article  CAS  Google Scholar 

  • Dell’Aquila, A., Corona, M. G., & Di Turi, M. (1998). Heat-shock proteins in monitoring aging and heat-induced tolerance in germinating wheat and barley embryos. Seed Science Research, 8(2), 91–98. https://doi.org/10.1017/S0960258500003986

    Article  CAS  Google Scholar 

  • Dhingra, O. D., & Sinclair, J. B. (1985). Culture media and their formulas. In O. Dhingra, & J. Sinclair, (Eds.), Basic Plant Pathology Methods. CRC Press: Boca Raton, FL.

  • Dikhoba, P. M., Mongalo, N. I., Elgorashi, E. E., & Makhafola, T. J. (2019). Antifungal and anti-mycotoxigenic activity of selected South African medicinal plants species. Heliyon, 5(10), e02668. https://doi.org/10.1016/j.heliyon.2019.e02668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. CAB International.

    Book  Google Scholar 

  • El-Rokiek, K. G., Dawood, M. G., Sadak, M. S., & El-Awadi, M. E. S. (2019). The effect of the natural extracts of garlic or Eucalyptus on the growth, yield and some chemical constituents in quinoa plants. Bulletin of the National Research Centre, 43, 1–7. https://doi.org/10.1186/s42269-019-0161-3

    Article  Google Scholar 

  • Ertani, A., Pizzeghello, D., Francioso, O., Tinti, A., & Nardi, S. (2016). Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules, 21(2), 205. https://doi.org/10.3390/molecules21020205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauillard, F., Richardforget, F., & Nicolas, J. (1993). New spectrophotometric assay for polyphenol oxidase activity. Analytical Chemistry, 215(1), 59–65. https://doi.org/10.1006/abio.1993.1554

    Article  CAS  Google Scholar 

  • Gehan, M. A., Hanan, A. E., Hassan, A. H. I., & Okbah, M. A. (2009). Marine natural products and their potential applications as anti-infective agents. The Scientific World Journal, 7(7), 872–880.

    Google Scholar 

  • Griffiths, G., Trueman, L., Crowther, T., Thomas, B., & Smith, B. (2002). Onions—a global benefit to health. Phytotherapy Research, 16(7), 603–615. https://doi.org/10.1002/ptr.1222

    Article  CAS  PubMed  Google Scholar 

  • Hanafy, M. S., Saadawy, F. M., Milad, S. M. N., & Ali, R. M. (2012). Effect of some natural extracts on growth and chemical constituents of Schefflera arboricola plants. Journal of Horticultural Science and Ornamental Plants, 4(1), 26–33.

    Google Scholar 

  • Hema, R., Kumaravel, S., & Alagusundaram, K. (2011). GC/MS determination of bioactive components of Murraya koenigii. Journal of American Science, 7(1), 80–83.

    Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163

    Article  CAS  Google Scholar 

  • Hsu, C. C., Chen, C. L., Chen, J. J., & Sung, J. M. (2003). Accelerated aging-enhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Scientia Horticulturae, 98(3), 201–212. https://doi.org/10.1016/S0304-4238(03)00002-5

    Article  CAS  Google Scholar 

  • Ignatenko, A. A., Talanova, V. V., Repkina, N. S., & Titov, A. F. (2021). Effect of Salicylic Acid on Antioxidant Enzymes and Cold Tolerance of Cucumber Plants. Russian Journal of Plant Physiology, 68(3), 491–498. https://doi.org/10.1134/S1021443721020059

    Article  CAS  Google Scholar 

  • Kanta, S. A., Nisha, H. A. C., Ferdous, R., Tohura, T., & Hossain, M. B. (2023). Evaluation the Effect of Fungicides, Micronutrients and Botanicals on Purple Blotch Complex of Onion in Bangladesh. European Journal of Agriculture and Food Sciences, 5(1), 97–102. https://doi.org/10.24018/ejfood.2023.5.1.625

    Article  Google Scholar 

  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology, 31(3), 715–725. https://doi.org/10.15258/sst.2003.31.3.20

    Article  Google Scholar 

  • Lakra, B. S. (1999). Development of purple blotch incited by Alternaria porri and its losses in seed crop of onion (Allium cepa). Indian Council of Agricultural Sciences, 69(2), 119–134.

    Google Scholar 

  • Lee, H. S., Kim, B. S., Kim, H. T., Cho, K. Y., & Ahn, Y. J. (1998). Fungicidal activities of leguminous seed extracts toward phytopathogenic fungi. The Korean Journal of Pesticide Science, 2(3), 21–27.

    CAS  Google Scholar 

  • Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Baffi, C., & Colla, G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Frontiers in Plant Science, 9, 472. https://doi.org/10.3389/fpls.2018.00472

    Article  PubMed  PubMed Central  Google Scholar 

  • Maehly, A., & Chance, B. (1954). Catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. https://doi.org/10.1002/9780470110171.ch14

    Article  CAS  PubMed  Google Scholar 

  • Mbambo, B., Odhav, B., & Mohanlall, V. (2012). Antifungal activity of stigmasterol, sitosterol and ergosterol from Bulbine natalensis Baker (Asphodelaceae). Journal of Medicinal Plant Research, 6(38), 5135–5141. https://doi.org/10.5897/JMPR12.151

    Article  CAS  Google Scholar 

  • McDonald, M. B. (2000). Seed priming. Seed technology and its biological basis. CRC Press: Boca Raton, FL.

  • Miller, M. E., & Lacy, M. L. (1995). Purple blotch. The American Phytopathological Society, Minnesota, USA.

    Google Scholar 

  • Moloudizargari, M., Mikaili, P., Aghajanshakeri, S., Asghari, M., & Shayegh, J. (2013). Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacognosy Reviews, 7(14), 199. https://doi.org/10.4103/0973-7847.120524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moosavi, A., Tavakkol Afshari, R., Sharif-Zadeh, F., & Aynehband, A. (2009). Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. Seed Science and Technology, 37(3), 781–785. https://doi.org/10.15258/sst.2009.37.3.26

    Article  Google Scholar 

  • Mostofa, M. G., & Fujita, M. (2013). Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22, 959–973. https://doi.org/10.1007/s10646-013-1073-x

    Article  CAS  PubMed  Google Scholar 

  • Nagwa, I. A. E. M., & Iman, K. A. (2017). Evaluation of certain plant extracts for the control of wheat leaf rust disease. Egyptian Journal of Biological Pest Control, 27(1), 23.

    Google Scholar 

  • Noor, M. A., Ahmad, W., Afzal, I., Salamh, A., Afzal, M., Ahmad, A., Ming, Z., & Wei, M. (2016). Pea seed invigoration by priming with magnetized water and moringa leaf extract. The Philippine Agricultural Scientist, 99, 171–175.

    Google Scholar 

  • Ntalli, N., Bratidou Parlapani, A., Tzani, K., Samara, M., Boutsis, G., Dimou, M., Menkissoglu-Spiroudi, U., & Monokrousos, N. (2020). Thymus citriodorus (Schreb) botanical products as eco-friendly nematicides with bio-fertilizing properties. Plants, 9(2), 202. https://doi.org/10.3390/plants9020202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okla, M. K., Alatar, A. A., Al-Amri, S. S., Soufan, W. H., Ahmad, A., & Abdel-Maksoud, M. A. (2021). Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh. Plants, 10(2), 252. https://doi.org/10.3390/plants10020252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne, D. J. (1983). Biochemical control systems operating in the early hours of germination. Canadian Journal of Botany, 61(12), 3568–3577. https://doi.org/10.1139/b83-406

    Article  CAS  Google Scholar 

  • Osburn, R. M., & Schroth, M. N. (1988). Effect of osmopriming sugar beet seed on exudation and subsequent damping-off caused by Pythium ultimum. Phytopathology, 78(9), 1246–1250.

    Article  Google Scholar 

  • Panse, V. C., & Sukhatme, P. V. (1978). Statistical methods for Agricultural workers. III Rev. Ed. ICAR, New Delhi.

  • Piri, R., Moradi, A., Balouchi, H., & Salehi, A. (2019). Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Scientia Horticulturae, 257, 108667. https://doi.org/10.1016/j.scienta.2019.108667

    Article  CAS  Google Scholar 

  • Ramasamy, R., Jaivel, N., & Marimuthu, P. (2014). Antifungal metabolite from Muntingia calabura root against early leaf blight of tomato. Journal of Medicinal Plant Research, 8(17), 646–656. https://doi.org/10.5897/JMPR2013.5340

    Article  CAS  Google Scholar 

  • Reda, E. H., Shakour, Z. T. A., El-Halawany, A. M., El-Kashoury, E. S. A., Shams, K. A., Mohamed, T. A., Saleh, I., Elshamy, A. I., Atia, M. A., El-Beih, A. A., & Hegazy, M. E. F. (2021). Comparative study on the essential oils from five wild Egyptian Centaurea species: Effective extraction techniques, antimicrobial activity and in-silico analyses. Antibiotics, 10(3), 252. https://doi.org/10.3390/antibiotics10030252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra, T., Gama, F., Correia, P. J., Da Silva, J. P., Miguel, M. G., de Varennes, A., & Pestana, M. (2020). A novel plant extract as a biostimulant to recover strawberry plants from iron chlorosis. Journal of Plant Nutrition, 43(13), 2054–2066. https://doi.org/10.1080/01904167.2020.1766079

    Article  CAS  Google Scholar 

  • Sadeghian, S. Y., & Yavari, N. (2004). Effect of water-deficit stress on germination and early seedling growth in sugar beet. Journal of Agronomy and Crop Science, 190(2), 138–144. https://doi.org/10.1111/j.1439-037X.2004.00087.x

    Article  Google Scholar 

  • Saini, S., & Raj, K. (2022). Relative efficacy of fungicides in managing onion purple blotch incited by Alternaria porri. Plant Disease Research, 37(2), 118–124. https://doi.org/10.5958/2249-8788.2022.00020.8

    Article  Google Scholar 

  • Santhoshi, A., Kumar, S. N., Sujitha, P., Poornachandra, Y., Sadhu, P. S., Kumar, C. G., & Rao, V. J. (2014). Synthesis of 1-benzhydryl piperazine derivatives and evaluation of their ACE inhibition and antimicrobial activities. Medicinal Chemistry Research, 23, 3207–3219. https://doi.org/10.1007/s00044-013-0895-7

    Article  CAS  Google Scholar 

  • Schmitz, H. (1930). A suggested toximetric method for wood preservatives. Industrial & Engineering Chemistry Analytical Edition, 2(4), 361–363. https://doi.org/10.1021/ac50072a004

    Article  CAS  Google Scholar 

  • Senthilkumar, M., Madhaiyan, M., Sundaram, S. P., & Kannaiyan, S. (2009). Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiological research, 164(1), 92–104. https://doi.org/10.1016/j.micres.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S. R. (1986). Effect of fungicidal sprays on purple blotch and bulb yield of onion. Indian Phytopathology, 39(1), 78–82.

    CAS  Google Scholar 

  • Shekhawat, P. S., & Prasad, R. (1971). Antifungal properties of some plant extracts. Indian Phytopathology., 24(1), 800–803.

    Google Scholar 

  • Singh, G. B. (1995). Effect of hydration-dehydration seed treatments on vigour and yield of sunflower. Indian Journal of Plant Physiology, 38, 66–68.

    Google Scholar 

  • Singh, S. (2023). Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chemistry Advances, 2, 100156. https://doi.org/10.1016/j.focha.2022.100156

    Article  Google Scholar 

  • Singh, G., Marimuthu, P., Lampasona, M. D., & Catalan, C. A. (2006). Cuminum cyminum L. Chemical constituents, antioxidant and antifungal studies on its volatile oil and acetone extract. Indian Perfumer, 50(3), 31–39.

    CAS  Google Scholar 

  • Soliman, W. S., Zakria, Y., Abdel-Rahman, S. S. A., & Salaheldin, S. (2020). Effect of salicylic acid, moringa leaves extract and seaweed extract on growth, yield and quality of roselle, Hibiscus sabdariffa L. under Aswan conditions. SVU-International Journal of Agricultural Sciences, 2(2), 476–483. https://doi.org/10.21608/svuijas.2020.52563.1061

    Article  Google Scholar 

  • Tarr, S. A. W. (1981). The principles of plant pathology. Macmillan press.

    Google Scholar 

  • Valenzuela-Cota, D. F., Buitimea-Cantúa, G. V., Plascencia-Jatomea, M., Cinco-Moroyoqui, F. J., Martínez-Higuera, A. A., & Rosas-Burgos, E. C. (2019). Inhibition of the antioxidant activity of catalase and superoxide dismutase from Fusarium verticillioides exposed to a Jacquinia macrocarpa antifungal fraction. Journal of Environmental Science and Health, Part B, 54(8), 647–654. https://doi.org/10.1080/03601234.2019.1622978

    Article  CAS  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases: Epidemics and control. Academic Press.

    Google Scholar 

  • Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159(4051), 850–850. https://doi.org/10.1038/159850b0

    Article  CAS  PubMed  Google Scholar 

  • Wanggikar, A. A., Wagh, S. S., Kuldhar, D. P., & Pawar, D. V. (2014). Effect of fungicides, botanicals and bioagents against purple blotch of onion caused by Alternaria porri. International Journal of Plant Protection, 7(2), 405–410.

    Article  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  • Wheeler, B. E. J. (1969). An introduction to plant diseases. John Wiley & Sons Ltd.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications, pp. 315–322. Academic Press, New York. 

  • Wilcoxson, R. D., Skovmand, B., & Atif, A. H. (1975). Evaluation of wheat cultivars for ability to retard development of stem rust. Annals of Applied Biology, 80(3), 275–281.

    Article  Google Scholar 

  • Yasmeen, A., Basra, S. M. A., Farooq, M., Rehman, H. U., Hussain, N., & Athar, H. U. R. (2013). Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regulation, 69, 225–233. https://doi.org/10.1007/s10725-012-9764-5

    Article  CAS  Google Scholar 

  • Yusoff, S. F., Haron, F. F., TengkuMudaMohamed, M., & Asib SakiminAbuKassimIsmail, N. S. Z. F. S. I. (2020). Antifungal activity and phytochemical screening of Vernonia amygdalina extract against Botrytis cinerea causing gray mold disease on tomato fruits. Biology, 9(9), 286. https://doi.org/10.3390/biology9090286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yüzbaşıoğlu, E., & Dalyan, E. (2019). Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiology and Biochemistry, 135, 322–330. https://doi.org/10.1016/j.plaphy.2018.12.023

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. P., Ruan, W. B., Deng, Y. Y., & Gao, Y. B. (2012). Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 60(46), 11631–11637.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Fungal Culture Collection Institute, Pune for confirmed identification of test pathogen.

Funding

No special funding was used.

Author information

Authors and Affiliations

Authors

Contributions

SS and KR designed the study. SS and MKB performed the experiments. SS and AKS wrote manuscript. KR and RK supervised the research and edited manuscript. ML provided seeds and facilitation for raising crop. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Shubham Saini.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors have reviewed the manuscript and consented the submission to the European Journal of Plant Pathology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Raj, K., Saini, A.K. et al. Efficacy of plant extracts in growth promotion and onion purple blotch management: Unveiling metabolite fingerprinting of promising neem leaf extracts through GC MS. Eur J Plant Pathol (2023). https://doi.org/10.1007/s10658-023-02810-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-023-02810-z

Keywords

Navigation