Skip to main content
Log in

Development and evaluation of dipalmitoyl phosphatidylcholine (DPPC) liposomal gel: rheology and in vitro drug release properties

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Liposomes have emerged as pivotal entities in the field of therapeutics, particularly in the domain of protein and vaccine administration. Hence, the development of novel liposomal formulations has garnered considerable interest. Liposomal delivery systems are considered advantageous as medication carriers, especially in the field of dermatology, owing to their moisturizing and restorative characteristics. Nevertheless, a significant drawback in the utilization of liposomes in topical applications is the inherent fluidity of the formulation, which might result in leakage following delivery to the skin surface. The use of liposomes inside the gel matrix, while maintaining the integrity of the vesicles, presents a potentially appealing method for topical administration. The primary objective of this work is to develop a liposomal-loaded gel formulation and assess its in vitro release characteristics as well as its rheological profile, including viscoelastic properties and flow behaviour. This study incorporated two different types of drugs, namely hydrophilic (specifically diphenhydramine hydrochloride) and hydrophobic (namely curcumin), inside its formulations. A liposome, composed of a long alkyl chain lipid such as DPPC with a chain length of 16, was synthesized using the thin film hydration process and subsequently integrated into a carbopol gel. It is noteworthy that the introduction of diphenhydramine hydrochloride (DPH) resulted in a substantial decrease in the elastic modulus and cohesiveness of the liposomal gel. Conversely, the incorporation of curcumin-loaded liposomal gel led to an increase in critical strain and cohesiveness when compared to the plain liposomal gel. In contrast, the liposomal gel containing DPH and curcumin demonstrated a reduced release rate compared to the plain liposomal gel, spanning a duration of 48 h. The in vitro release studies offer the potential for the utilization of liposomal gels as a sustained delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data is available within the article.

References

  1. Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27:1372. https://doi.org/10.3390/molecules27041372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M (2017) Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem 5(2017):103. https://doi.org/10.3389/fchem.2017.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W (2022) Liposomes: structure, composition, types, and clinical applications. Heliyon 8:e09394. https://doi.org/10.1016/j.heliyon.2022.e09394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee MK (2020) Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics 12:264. https://doi.org/10.3390/pharmaceutics12030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allahou LW, Madani SY, Seifalian A (2021) Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int J Biomater. https://doi.org/10.1155/2021/3041969

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao Y, Dong X, Chen X (2022) Polymer-modified liposomes for drug delivery: from fundamentals to applications. Pharmaceutics 14:778. https://doi.org/10.3390/pharmaceutics14040778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakhaei P, Margiana P, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Beheshtkhoo N (2021) Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.705886

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lombardo D, Kiselev MA (2022) Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 14:543. https://doi.org/10.3390/pharmaceutics14030543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang TT (2019) Soy lecithin-derived liposomal delivery systems: surface modification and current applications. Int J Mol Sci 20:4706. https://doi.org/10.3390/ijms20194706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibis M, Zeeb B, Weiss J (2014) Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocoll 38:28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014

    Article  CAS  Google Scholar 

  11. Uchegbu IF, Schätzlein AG, Cheng WP, Lalatsa A (2013) Fundamentals of pharmaceutical nanoscience. Springer, New York. https://doi.org/10.1007/978-1-4614-9164-4

    Book  Google Scholar 

  12. Juszkiewicz K, Sikorski AF, Czogalla A (2020) Building blocks to design liposomal delivery systems. Int J Mol Sci 21:9559. https://doi.org/10.3390/ijms21249559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomnikova A, Orgonikova A, Krizek T (2022) Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis. Monatsh Chem 153:687–695. https://doi.org/10.1007/s00706-022-02966-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mou Y, Zhang P, Lai WF, Zhang D (2022) Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv 29:3245–3255. https://doi.org/10.1080/10717544.2022.2139021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruiz-Rubio L, Alonso ML, Pérez-Álvarez L, Alonso RM, Vilas JL, Khutoryanskiy VV (2018) Formulation of Carbopol®/poly(2-ethyl-2-oxazoline) mucoadhesive tablets for buccal delivery of hydrocortisone. Polymers 10:175. https://doi.org/10.3390/polym10020175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scomoroscenco C, Teodorescu M, Raducan A, Stan M, Voicu SN, Trica B, Cinteza LO (2021) Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 13:505. https://doi.org/10.3390/pharmaceutics13040505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maja L, Željko K, Mateja P (2020) Sustainable technologies for liposome preparation. J Supercrit Fluids 165:104984. https://doi.org/10.1016/j.supflu.2020.104984

    Article  CAS  Google Scholar 

  18. Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH (2020) Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 10:1–15. https://doi.org/10.1007/s13205-020-2144-3

    Article  Google Scholar 

  19. Park SN, Jo NR, Jeon SH (2014) Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J Ind Eng Chem 20:1481–1485. https://doi.org/10.1016/j.jiec.2013.07.035

    Article  CAS  Google Scholar 

  20. Zhou W, Liu W, Zou L, Liu W, Liu C, Liang R, Chen J (2014) Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces 117:330–337. https://doi.org/10.1016/j.colsurfb.2014.02.036

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, Ismail NM (2016) Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 23:1075–1091. https://doi.org/10.3109/10717544.2014.943336

    Article  CAS  PubMed  Google Scholar 

  22. Aziz SN, Badawy AA, Nessem DI, Abd El Malak NS (2020) Promising nanoparticulate system for topical delivery of diphenhydramine hydrochloride: in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 55:101454. https://doi.org/10.1016/j.jddst.2019.101454

    Article  CAS  Google Scholar 

  23. Jeengar MK, Rompicharla SVK, Shrivastava S, Chella N, Shastri NR, Naidu VGM, Sistla R (2016) Emu oil based nano-emulgel for topical delivery of curcumin. Int J Pharm 506:222–236. https://doi.org/10.1016/j.ijpharm.2016.04.052

    Article  CAS  PubMed  Google Scholar 

  24. Dei Cas M, Ghidoni R (2019) Dietary curcumin: correlation between bioavailability and health potential. Nutrients 11:2147. https://doi.org/10.3390/nu11092147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yousef SA, Mohammed YH, Namjoshi S, Grice JE, Benson HAE, Sakran W, Roberts MS (2019) Mechanistic evaluation of enhanced curcumin delivery through human skin in vitro from optimised nanoemulsion formulations fabricated with different penetration enhancers. Pharmaceutics 11:639. https://doi.org/10.3390/pharmaceutics11120639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei Tan H, Misni M (2014) Effect of chitosan-modified fatty acid liposomes on the rheological properties of the carbohydrate-based gel. Appl Rheol 24:16–24. https://doi.org/10.3933/applrheol-24-34839

    Article  Google Scholar 

  27. Heggset EB, Strand BL, Sundby KW, Simon S, Chinga-Carrasco G, Syverud K (2019) Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose 26:581–595. https://doi.org/10.1007/s10570-018-2142-3

    Article  CAS  Google Scholar 

  28. Rudraraju VS, Wyandt CM (2005) Rheology of microcrystalline cellulose and sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part II. Int J Pharm 292:63–73. https://doi.org/10.1016/j.ijpharm.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  29. Huang M, Liang C, Tan C, Huang S, Ying R, Wang Y, Wang Z, Zhang Y (2019) Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct 10:6447–6458. https://doi.org/10.1039/c9fo01338e

    Article  CAS  PubMed  Google Scholar 

  30. Ismail SH, Hamdy A, Ismail TA, Mahboub HH, W. H., Mahmoud, W. M. Daoush, (2021) Synthesis and characterization of antibacterial Carbopol/ZnO hybrid nanoparticles gel. Crystals 11:1092. https://doi.org/10.3390/cryst11091092

    Article  CAS  Google Scholar 

  31. Pramod K, Shanavas S, Ansari SH, Ali J (2015) Eugenol significantly affects the flow of its nanodroplet gel. Int J Pharm Investig 5:200–204. https://doi.org/10.4103/2230-973X.167669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dejeu IL, Vicaș LG, Vlaia LL, Jurca T, Mureșan ME, Pallag A, Coneac GH, Olariu IV, Muț AM, Bodea AS, Dejeu GE, Maghiar OA, Marian E (2022) Study for evaluation of hydrogels after the incorporation of liposomes embedded with caffeic acid. Pharmaceuticals 15:175. https://doi.org/10.3390/ph15020175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mady O (2014) Studying the effect of dispersed drug crystal in the organic phase on the encapsulation by solvent evaporation technique; (4) dependent models as tools for studying the drug release. World J Pharm Sci 549–564

  34. Wu WD, Liu W, Selomulya C, Chen XD (2011) On spray drying of uniform silica-based microencapsulates for controlled release. Soft Matter 7:11416–11424. https://doi.org/10.1039/C1SM05879G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A generous gift of Carbopol 934 from Corel Pharma Chem, Ahmedabad, India is acknowledged. We are also grateful for the support of the Department of Chemistry, the University of Malaya, and National Gifted Center, National University of Malaysia for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premanarayani Menon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, P., Teo, Y.Y. & Misran, M. Development and evaluation of dipalmitoyl phosphatidylcholine (DPPC) liposomal gel: rheology and in vitro drug release properties. Korea-Aust. Rheol. J. 36, 45–54 (2024). https://doi.org/10.1007/s13367-023-00082-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00082-x

Keywords

Navigation