Skip to main content

Advertisement

Log in

Evaluation and comparison of the mechanism of two bioactive materials in vital pulp therapy: a molecular dynamics simulation approach

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Dental biomaterials are commonly used in vital pulp therapy to protect dentin against degradation. However, the protection role of the ions diffusing in affected dentin in indirect pulp capping remains not fully understood due to the limitations of experimental techniques to validate it at the atomic scale. In this study, molecular dynamics (MD) is used for studying two bioactive materials, during mineral apatite formation and remineralization. LAMMPS code with DREIDING Force Field and Universal Force-Fields (UFF) simulated the behaviour of calcium hydroxide and mineral trioxide aggregate in the tooth structure in the oral environment. The comparison of the physical parameters provided by the simulation is discussed in detail to explore the possibilities of crystallization depending on potential energy, lattice constant, XRD pattern, atomic volume and radius of gyration. MD results show that the crystallization process occurs in both materials after about 10 ns, at 310 K and 1 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Nyvad B, Crielaard W, Mira A, Takahashi N and Beighton D 2013 ORCA 47 89

    CAS  Google Scholar 

  2. Neves A, Bergstrom T, Gonçalves A, Santos T, Lopes R and de Almeida Neves A 2019 Clin. Oral Investig. 23 1865

    Article  Google Scholar 

  3. Estrela C and Holland R 2003 J. Appl. Oral Sci. 11 269

    Article  Google Scholar 

  4. Camilleri J (ed) 2014 Composition and setting reaction, in mineral trioxide aggregate in dentistry: from preparation to application (Berlin: Springer) p 19

  5. Zhang W and Yelick P 2010 Int. J. Dent. 2010 9

    Article  Google Scholar 

  6. Kunert M and Lukomska-Szymanska M 2020 Materials 13 1204

    Article  CAS  Google Scholar 

  7. Özdemir H, Özçelik B, Karabucak B and Cehreli Z 2008 Dent. Traumatol. 24 70

    Article  Google Scholar 

  8. Bueno C, Vasques A, Cury M, Araújo G, Jacinto R, Filho J et al 2019 Clin. Oral Investig. 23 169

    Article  Google Scholar 

  9. Stanley H and Lundy T 1972 Oral Surg. Oral Med. Oral Pathol. 34 818

    Article  CAS  Google Scholar 

  10. Karrari S Z, Afarideh H, Kermanshah H, Aquilanti G, Aligol D, Shahidi Z et al 2023 J. Mater. Sci. 58 4576

    Article  CAS  Google Scholar 

  11. Yeo J C C, Lin T T, Koh J J, Low L W, Tan B H and Li Z 2021 Compos. Commun 27 100894

    Article  Google Scholar 

  12. Edueng K, Kabedev A, Ekdahl A, Mahlin D, Baumann J, Mudie D et al 2022 Int. J. Pharm. 613 121360

    Article  CAS  Google Scholar 

  13. Adrjanowicz K, Wojnarowska Z, Grzybowska K, Hawelek L, Kaminski K, Paluch M et al 2011 Phys. Rev. E 84 051507

    Article  CAS  Google Scholar 

  14. Carmona J, Felippe M and Felippe W 2010 J. Endod. 36 164

    Article  Google Scholar 

  15. Garlaschelli D, Hollander F and Roccaverde A 2018 J. Stat. Phys. 173 644

    Article  Google Scholar 

  16. Jones J E 1924 R. Soc. Open Sci. 106 463

    CAS  Google Scholar 

  17. Mayo S, Olafson B and Goddard W 1990 J. Phys. Chem. 94 8897

    Article  CAS  Google Scholar 

  18. Fowles G R and Cassiday G L 1999 Analytical mechanics 7th edn. (Philadelphia: Saunders College Publishing) p 498

    Google Scholar 

  19. Hayek S I 2003 Digital encyclopedia of applied physics (Hoboken: Wiley) https://doi.org/10.1002/3527600434.eap231

    Book  Google Scholar 

  20. Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269

    Article  CAS  Google Scholar 

  21. Rapaport D C and Rapaport D C R 2004 The art of molecular dynamics simulation 2nd edn. (Cambridge: Cambridge University Press) p 46

    Book  Google Scholar 

  22. Hairer E, Lubich C and Wanner G 2003 Acta Numer. 12 39

    Article  Google Scholar 

  23. Press W, Teukolsky S, Vetterling W and Flannery B 2007 Numerical recipes: the art of scientific computing 3rd edn. (Cambridge: Cambridge University Press)

    Google Scholar 

  24. Nosé S 1984 J. Chem. Phys. 81 511

    Article  Google Scholar 

  25. Hoover W G 1985 Phys. Rev. A 31 1695

    Article  CAS  Google Scholar 

  26. Reich S 2010 SIREV 52 213

    Google Scholar 

  27. Dunkel J and Hilbert S 2006 Phys. A Stat. Mech. 370 390

    Article  Google Scholar 

  28. Stukowski A 2009 Model Simul. Mater. Sci. Eng. 18 015012

    Article  Google Scholar 

  29. Steinhardt P, Nelson D and Ronchetti M 1983 Phys. Rev. B 28 784

    Article  CAS  Google Scholar 

  30. Tronstad L, Andreasen J, Hasselgren G, Kristerson L and Riis I 1981 J. Endod. 7 17

    Article  CAS  Google Scholar 

  31. Arnold W and Gaengler P 2007 Ann. Anat. 189 183

    Article  CAS  Google Scholar 

  32. Coleman S, Spearot D and Capolungo L 2013 MSMSE 21 055020

    CAS  Google Scholar 

  33. Xue J, Zavgorodniy A, Kennedy B, Swain M and Li W 2013 J. Microsc. 251 144

    Article  CAS  Google Scholar 

  34. Basturk F, Nekoofar M, Gunday M and Dummer P 2018 Clin. Oral Investig. 22 1675

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are highly thankful to the International Centre for Theoretical Physics (ICTP) and IAEA for supporting and providing laboratory and space facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Afarideh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karrari, S.Z., Afarideh, H., Kermanshah, H. et al. Evaluation and comparison of the mechanism of two bioactive materials in vital pulp therapy: a molecular dynamics simulation approach. Bull Mater Sci 47, 12 (2024). https://doi.org/10.1007/s12034-023-03091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03091-2

Keywords

Navigation