Skip to main content
Log in

Multispecies genetic approach reveals divergent connectivity patterns in marine fish from Western Atlantic

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Traditionally, the apparent paucity of biogeographic barriers in marine environments when compared to terrestrial and freshwater habitats has been associated with high gene flow rates among geographically distant populations. However, physical traits such as tide currents, temperature, and salinity levels may serve as ecological boundaries thus leading to restricted-range phylogeographic patterns (e.g., the outflow plume from the Amazonas-Orinoco rivers between the Caribbean and the Brazilian Province) according to adaptive features of coastal organisms. To assess the degree of cohesiveness among populations and species of marine and estuarine fishes along a latitudinal gradient from Western South Atlantic, we carried out comparative phylogenetic and species delimitation analyses based on Cytochrome C Oxidase I (COI) sequences of 34 fish taxa from the Caribbean and Brazilian coasts. Distinct values of genetic diversity were revealed for both Provinces, ranging from moderate (1 to 2%) to high (≥ 2%) in 11.76% and 20.59% of the analyzed taxa, respectively. Furthermore, a significant genetic differentiation was observed within the nominal taxa Diapterus auratus, Citharichthys spilopterus, and Scorpaena plumieri from the Caribbean, as well as for Haemulon plumierii between the Caribbean and Brazilian Provinces. Such divergence is likely to result from temporal isolation among local populations during sea-level fluctuations during the Pliocene-Pleistocene period. The present findings demonstrate that similar biogeographic boundaries may result in species-specific patterns of genetic connectivity, possibly associated with ecological constraints. Since molecular operational taxonomic units (MOTUs) were identified in certain formal taxa from both Provinces, a systematic revision of these groups is highly recommended. At last, multispecies COI data proved to be helpful to phylogeographic inferences and to support appropriate policies for the conservation of natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida LA, Nunes LA, Bitencourt JA, Molina WF, Affonso PRAM (2017) Chromosomal evolution and cytotaxonomy in wrasses (Perciformes; Labridae). J Hered 108:239–253

    Article  CAS  PubMed  Google Scholar 

  • Araujo GS, Rocha LA, Lastrucci NS, Luiz OJ, Di Dario F, Floeter SR (2022) The Amazon-Orinoco Barrier as a driver of reef-fish speciation in the Western Atlantic through time. J Biogeog 49:1407–1419

    Article  Google Scholar 

  • Argolo LA, Ramos RTC, Barreto SB, Bitencourt JA, Sampaio I, Schneider H, Affonso PRAM (2018) The flounder next door: closer evolutionary relationship between allopatric than sympatric Bothus (Rafinesque, 1810) species (Pleuronectiformes, Bothidae). Zool Anz 277:131–142

    Article  Google Scholar 

  • Ball AO, Beal MG, Chapman RW, Sedberry GR (2007) Population structure of red porgy, Pagrus pagrus, in the Atlantic Ocean. Mar Biol 150:1321–1332

    Article  Google Scholar 

  • Beheregaray LB, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proc R Soc Lond B: Biol Sci 269:65–73

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem 5:32

    Google Scholar 

  • Berbel-Filho WM, Ramos TPA, Jacobina UP, Maia DJG, Torres RA, Lima SMQ (2018) Updated checklist and DNA barcode-based species delimitations reveal taxonomic uncertainties among freshwater fishes from the mid-north-eastern Caatinga ecoregion, north-eastern Brazil. J Fish Biol 93:311–323. https://doi.org/10.1111/jfb.13758

    Article  PubMed  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS comp biol 10:e1003537

    Article  Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeog 39:12–30

    Article  Google Scholar 

  • Carpenter KE, De Angelis N (2002) The living marine resources of the Western Central Atlantic (Vol. 2). Food and agriculture organization of the United Nations Rome

  • Cowman PF, Bellwood DR (2013) Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc R Soc Lond B: Biol Sci 280:20131541

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Iriarte PJ, Alonso MP, Sabadin DE, Arauz PA, Iudica CM (2011) Phylogeography of weakfish Cynoscion guatucupa (Perciformes: Sciaenidae) from the southwestern Atlantic. Sci Mar (Barcelona) 75:701–706

    Article  Google Scholar 

  • Floeter SR, Gasparini JL (2001) Brazilian endemic reef fishes. Coral Reefs 19:292–292

    Article  Google Scholar 

  • Freitas R, Luiz OJ, Silva PN, Floeter SR, Bernardi G, Ferreira CEL (2014) The occurrence of Sparisoma frondosum (Teleostei: Labridae) in the Cape Verde Archipelago, with a summary of expatriated Brazilian endemic reef fishes. Mar Biodivers 44:173–179. https://doi.org/10.1007/s12526-013-0194-z

    Article  Google Scholar 

  • Grant WS, Bowen BW (2006) Living in a tilted world: climate change and geography limit speciation in Old World anchovies (Engraulis; Engraulidae). Biological J Linn Soc 88:673–689

    Article  Google Scholar 

  • Gysels ES, Hellemans B, Pampoulie C, Volckaert FAM (2004) Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol Ecol 13:403–417. https://doi.org/10.1046/j.1365-294X.2003.02087.x

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., pp 95-98

  • Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc National Acad Sci 111:E2957–E2966

    Article  ADS  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Series B: Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, De Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Series B: Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Lin Soc 58:247–276. https://doi.org/10.1111/j.1095-8312.1996.tb01434.x

    Article  Google Scholar 

  • Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL (2007) Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol ecol 16:3606–3616

    Article  CAS  PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Warrant EJ, Musick JA, Latour RJ (2010) Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay. J Exp Biol 213:1751–1761. https://doi.org/10.1242/jeb.038117

    Article  PubMed  Google Scholar 

  • Jacobina UP, Lima SMQ, Maia DG, Souza G, Batalha-Filho H, Torres RA (2018) DNA barcode sheds light on systematics and evolution of neotropical freshwater trahiras. Genetica 146:505–515

    Article  CAS  PubMed  Google Scholar 

  • Jacobina UP, Torres RA, Mello Affonso PRA, Santos EV, Calado LL, Araújo Bitencourt J (2020) DNA barcoding reveals cryptic diversity and peculiar phylogeographic patterns in mojarras (Perciformes: Gerreidae) from the Caribbean and South-western Atlantic. J Mar Biol Assoc U K: 1-7

  • Joyeux JC, Floeter SR, Ferreira CEL, Gasparini JL (2001) Biogeography of tropical reef fishes: the South Atlantic puzzle. J Biogeog 28:831–841

    Article  Google Scholar 

  • Kearse M, Sturrock S, Meintjes P (2012) The Geneious 6.0. 3 read mapper. Auckland, New Zealand: Biomatters, Ltd

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Sci 292:679–686

    Article  ADS  CAS  Google Scholar 

  • Landi M, Dimech M, Arculeo M, Biondo G, Martins R, Carneiro M, Carvalho GR, Brutto SL, Costa FO (2014) DNA barcoding for species assignment: the case of Mediterranean marine fishes. PLoS One 9:e106135

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Liedke AMR, Pinheiro HT, Floeter SR, Bernardi G (2020) Phylogeography of the banded butterflyfish, Chaetodon striatus, indicates high connectivity between biogeographic provinces and ecosystems in the western Atlantic. Neotropical Ichthyol 18(1):e190054. https://doi.org/10.1590/1982-0224-2019-0054

  • Ludt WB, Rocha LA (2015) Shifting seas: The impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J Biogeog 42:25–38

    Article  Google Scholar 

  • Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin JS (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc National Acad Sci 110:16498–16502

    Article  ADS  CAS  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc Lond Series B: Biol Sci 279:1033–1040

    Google Scholar 

  • McBride RS, Horodysky AZ (2004) Mechanisms maintaining sympatric distributions of two ladyfish (Elopidae: é) morphs in the Gulf of Mexico and western North Atlantic Ocean. Limnol Oceanogr 49:1173–1181

    Article  ADS  Google Scholar 

  • Menezes NA, Buckup PA, de Figueiredo JL, de Moura R L. (2003) Catálogo das espécies de peixes marinhos do Brasil (Vol. 1). Museu de Zoologia da Universidade de São Paulo São Paulo

  • Miller RL, Del Castillo CE, McKee BA (2005) Remote sensing of coastal aquatic environments. Springer

    Book  Google Scholar 

  • Miloslavich P, Klein E, Díaz JM, Hernandez CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PloS One 6:e14631

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora C, Treml EA, Roberts J, Crosby K, Roy D, Tittensor DP (2012) High connectivity among habitats precludes the relationship between dispersal and range size in tropical reef fishes. Ecogr 35:89–96

    Article  ADS  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Silva JM Jr, Araujo BF (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Neves JM, Lima SM, Mendes LF, Torres RA, Pereira RJ, Mott T (2016) Population structure of the rockpool blenny Entomacrodus vomerinus shows source-sink dynamics among ecoregions in the tropical Southwestern Atlantic. PloS one 11:e0157472

    Article  PubMed  PubMed Central  Google Scholar 

  • Nirchio M, Gaviria JI, Siccha-Ramirez ZR, Oliveira C, Foresti F, Milana V, Rossi AR (2019) Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications. Genetica 147:47–56

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell TP, Reichert MJ, Darden TL (2019) Genetic population structure of white grunt in the southeastern United States. North Am J Fish Manag 39:725–737

    Article  Google Scholar 

  • Obermiller LE, Pfeiler E (2003) Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol Phylogenetics Evol 26:202–214

    Article  CAS  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Pereyra S, García G, Miller P, Oviedo S, Domingo A (2010) Low genetic diversity and population structure of the narrownose shark (Mustelus schmitti). Fish Res 106:468–473

    Article  Google Scholar 

  • Peluso L, Tascheri V, Nunes F, Castro CB, Pires DO, Zilberberg C (2018) Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci Rep 8:2684. https://doi.org/10.1038/s41598-018-21010-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG, Di Dario F, Ferreira CEL, Figueiredo-Filho J, Francini-Filho R (2018) South-western Atlantic reef fishes: zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib 24:951–965

    Article  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst biol 55:595–609

    Article  PubMed  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic barcode gap discovery for primary species delimitation. Mol ecol 21:1864–1877

    Article  CAS  PubMed  Google Scholar 

  • Robertson DR, Cramer KL (2014) Defining and dividing the greater Caribbean: insights from the biogeography of shorefishes. PLoS One 9:e102918

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Robertson DR, Grove JS, McCosker JE (2004) Tropical transpacific shore fishes. Pacific Sci 58:507–565

    Article  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeog 30:1161–1171

    Article  Google Scholar 

  • Rocha LA (2004) Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia 2004:770–782

    Article  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–251

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72:1101–1121. https://doi.org/10.1111/j.1095-8649.2007.01770.x

    Article  Google Scholar 

  • Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512. https://doi.org/10.1007/s00338-007-0261-7

    Article  ADS  Google Scholar 

  • Rocha LA, Lindeman KC, Rocha CR, Lessios HA (2008) Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Mol Phylogenetics Evol 48:918–928

    Article  CAS  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B: Biol Sci 272:573–579

    Article  Google Scholar 

  • Ross Robertson D, Karg F, Leao de Moura R, Victor BC, Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol Phylogen Evol 40:795–807. https://doi.org/10.1016/j.ympev.2006.04.011

    Article  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Serra-Pereira B, Moura T, Griffiths AM, Serrano Gordo L, Figueiredo I (2011) Molecular barcoding of skates (Chondrichthyes: Rajidae) from the southern Northeast Atlantic. Zool Scr 40:76–84

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioSci 57:573–583

    Article  Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomaz AT, Malabarba LR, Bonatto SL, Knowles LL (2015) Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J Biogeog 42:2389–2401

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toonen R, Bowen B, Iacchei M, Briggs J (2016) Marine biogeography. Encyclopedia of. Evol Biology 1:166–178

    Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2005.1716

    Article  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinform 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff from the Laboratory of Fisheries Biology and Scientific Diving of the Oceanography Department at Federal University of Rio Grande do Norte, as well as to Jorge Eduardo Lins Oliveira and Marcelo Francisco de Nóbrega for providing logistical support for sampling. We would like to thank José Garcia Junior for his assistance with the identification of specimens, Marie-Christine Rufener, Milena Felix Nakamura, and Erika Belarmino da Silva for their contributions in preparation and storage of samples. At last, we sincerely acknowledge the efforts of all crew members from the fishing fleet in the state of Rio Grande do Norte.

Funding

The financial support to the present study was granted from Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) on behalf of UPJ (BCT-0125-2.04/ 15), Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (425080/2016-1), Fundação de Amparo do Estado de Alagoas, FAPEAL (APQ – 1026/2016) and the Coordination for the Improvement of Higher Education Personnel of Superior (CAPES, financial code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uedson Pereira Jacobina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The collection license was obtained by the government agency SISBIO (27027-5). No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with unregulated fish species.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Data availability

All faunistic data generated or analyzed during this study are included in this published article, whereas COI sequences are deposited in GenBank (see electronic supplementary Table S1).

Author contribution

DGM and UPJ conducted the literature search and wrote the first draft of the manuscript. LLC, JAB, PRAMA, RAT, and GS performed data analysis and revised/edited the final versions of the manuscript. All authors read and approved the final manuscript.

Additional information

Communicated by S. E. Lluch-Cota

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 100 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus Gama-Maia, D., Calado, L.L., de Araujo Bitencourt, J. et al. Multispecies genetic approach reveals divergent connectivity patterns in marine fish from Western Atlantic. Mar. Biodivers. 54, 4 (2024). https://doi.org/10.1007/s12526-023-01399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-023-01399-0

Keywords

Navigation