Skip to main content
Log in

Theoretical investigations of Zr-concentration influence on the thermodynamic, elastic, electronic, and structural stability of D022/L12-Al3Ti

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A theoretical study was conducted to analyze electronic, elastic, and thermodynamic properties and the structural stability of the intermetallic materials Al3Ti1−xZrx for tetragonal-D022 and cubic-L12 structures carried out based on DFT. The findings indicate that the D022 phase has demonstrated more stability than the L12 phase and the possibility of a structural phase transition under pressure effect for concentrations x = 0.25 and x = 0.5. With increasing x concentration, the resulting lattice parameters drop. The density of states at the Fermi level, determines the electronic stability exhibited by these compounds. A pseudo-gap in proximity to the Fermi level implies the establishment of directional covalent bonding. The electronic structures support the phase stability results and show that the bonding in these compounds is more directed. Measurement techniques are employed to determine the number of bonding electrons per atom and the coefficient of electronic-specific heat. Both the mechanical as well as elastic properties of the considered alloys are examined. The findings demonstrate that all explored alloys are brittle, and D022 phase is stiffer than the L12 phase. The thermal characteristics are predicted via the quasi-harmonic Debye model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statements

Data sharing does not apply to this article.

References

  1. Y.V. Milman, D.B. Miracle, S.I. Chugunova, I.V. Voskoboinik, N.P. Korzhova, T.N. Legkaya, Y.N. Podrezov, Intermetallics 9, 839 (2001)

    Article  CAS  Google Scholar 

  2. Sauthoff G. In: Westbrook JH, Fleischer RL, editors. Intermetallic compounds, vol. 1 (Wiley, New York, 1994) p.991.

  3. R.W. Cahn, Intermetallics 6, 563 (1998)

    Article  CAS  Google Scholar 

  4. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams, 2nd edition, ASM International, Materials Park (1990)

  5. P. Villars, Pearson’s handbook of crystallographic data for intermetallic phases (American Society for Metals, Materials Park, 1997)

    Google Scholar 

  6. R.B. Schwarz, P.B. Desch, S. Srinivasan, P. Nash, Nanostruct. Mater. 1, 37 (1992)

    Article  CAS  Google Scholar 

  7. C.L. Fu, J. Mater. Res. 5, 971 (1990)

    Article  CAS  ADS  Google Scholar 

  8. M. Krajčí, J. Hafner, J. Phys, Condens. Matter 14, 1865 (2002)

    Article  ADS  Google Scholar 

  9. M. Jahnátek, M. Krajčí, J. Hafner, Phys. Rev. B 71, 024101 (2005)

    Article  ADS  Google Scholar 

  10. S. Saha, T.Z. Todorova, J.W. Zwanziger, Acta Mater. 89, 109 (2015)

    Article  CAS  ADS  Google Scholar 

  11. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Acta Mater. 54, 5241 (2006)

    Article  CAS  ADS  Google Scholar 

  12. J. Li, M. Zhang, X. Luo, J. Alloys Compd. 556, 214 (2013)

    Article  CAS  Google Scholar 

  13. S.S. Nayak, S.K. Pabi, B.S. Murty, Intermetallics 15, 26 (2007)

    Article  CAS  Google Scholar 

  14. R.N. Wang, L. Ma, R.K. Pan, T.P. Luoa, S.C. Zhou, B.Y. Tang, Comput. Mat. Sci. 79, 136 (2013)

    Article  CAS  Google Scholar 

  15. Z. Chen, H. Zou, F. Yu, J. Zou, J. Phys. Chem. Solids 71, 946–951 (2010)

    Article  CAS  ADS  Google Scholar 

  16. G. Zhang, F. Sun, H. Liu, X. Ren, H. Xu, M. Wang, Y. Fu, Materials 14(9), 2206 (2021)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. B.T. Tan, J. Zhang, K.V. Sopiha, P. Wu, Met. Mat. Int. 25(4), 869 (2019)

    Article  CAS  Google Scholar 

  18. C.M. Fang, Z. Fan, Comp. Mat. Sci. 153, 309 (2018)

    Article  CAS  Google Scholar 

  19. X. Pang, X. Chen, J. Yang, M. Pang, W. Yang, Y. Zhan, J. Phys. Chem. Solids 131, 243 (2019)

    Article  CAS  ADS  Google Scholar 

  20. H. Hu, X. Wu, R. Wang, Z. Jia, W. Li, Q. Liu, J. Alloys Compd. 666, 185 (2016)

    Article  CAS  Google Scholar 

  21. Y.H. Duan, Y. Sun, M.J. Peng, S.G. Zhou, J. Phys. Chem. Solids 75, 535–542 (2014)

    Article  CAS  ADS  Google Scholar 

  22. C. Colinet, A. Pasturel, J. Alloys Compd. 319, 154 (2001)

    Article  CAS  Google Scholar 

  23. C.S. Lue, B.X. Xie, S.N. Horng, J.H. Su, J.Y. Lin, Phys. Rev. B 71, 195104 (2005)

    Article  ADS  Google Scholar 

  24. M. Yamaguchi, H. Inui, in Intermetallic Compounds, Al3Ti and its L12 variations, edited by J. Westbrook and R. Fleischer (John Wiley & Sons, New York, 1994), pp. –172.

  25. M. Yamaguchi, H. Ini, Al3Ti and its L12 variations, in Intermetallic compounds, vol. 2, ed. by J.H. Westbrook, R.L. Fleischer (Wiley, New York, 1994), pp.147–172

    Google Scholar 

  26. S.S. Nayak, B.S. Murty, Mater. Sci. Eng. A 12, 367 (2004)

    Google Scholar 

  27. O. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  CAS  ADS  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, Austria (2001)

  29. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  30. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  31. M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 57–72 (2004)

    Article  CAS  ADS  Google Scholar 

  32. R.A. Swalin, Thermodynamics of Solids (John Wiley, New York, 1961)

    Google Scholar 

  33. L.G. Ferreira, S.H. Wei, J.E. Bernard, A. Zunger, Phys. Rev. B 40, 3197 (1989)

    Article  CAS  ADS  Google Scholar 

  34. L.K. Teles, J. Furthmüller, L.M.R. Scolfaro, J.R. Leite, F. Bechstedt, Phys. Rev. B 62, 2475 (2000)

    Article  CAS  ADS  Google Scholar 

  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. R. Boulechfar, S. Ghemid, H. Meradji, B. Bouhafs, Physica B 405, 4045 (2010)

    Article  CAS  ADS  Google Scholar 

  37. G. Ghosh, M. Asta, Acta Mater. 53, 3225 (2005)

    Article  CAS  ADS  Google Scholar 

  38. G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Intermetallics 15, 44 (2007)

    Article  CAS  Google Scholar 

  39. T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J.H. Xu, Phys. Rev. B 41, 12462 (1990)

    Article  CAS  ADS  Google Scholar 

  40. M. Asta, D.D. de Fontaine, M. van Schilfgaarde, J. Mater. Res. 8, 2554 (1993)

    Article  CAS  ADS  Google Scholar 

  41. C. Amador, J.J. Hoyt, B.C. Chakoumakos, D. de Fontaine, Phys. Rev. Lett. 74, 4955 (1998)

    Article  ADS  Google Scholar 

  42. C. Li, N. Cheng, Z. Chen, Z. Xie, L. Hui, Materials 11(4), 636 (2018)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Y. Cao, C. Zhang, S. Zhou, Y. Xu, B. Peng, Z. Jiao, K. Luo, C. Tian, Physica B 594, 412294 (2020)

    Article  CAS  Google Scholar 

  44. P. Norby, N. Christensen, Acta Chem. Scand. A 40, 157 (1986)

    Article  Google Scholar 

  45. S. Srinivasan, P.B. Desch, R.B. Schwartz, Scr. Metall. Mater. 25, 2513 (1991)

    Article  CAS  Google Scholar 

  46. M. Nassik, F.Z. Chrifi-Alaoui, K. Mahdouk, J.C. Gachon, J. Alloy. Compd. 350, 151 (2003)

    Article  CAS  Google Scholar 

  47. J.H. Xu, A.J. Freeman, Phys. Rev. B 41, 12553 (1990)

    Article  CAS  ADS  Google Scholar 

  48. E. Clouet, J.M. Sanchez, C. Sigli, Phys. Rev. B 65, 094105 (2002)

    Article  ADS  Google Scholar 

  49. S.S. Nayaka, S.K. Pabia, B.S. Murty, Intermetallics 15, 26 (2007)

    Article  Google Scholar 

  50. P.B. Desch, R.B. Schwarz, P. Nash, J. Less-Common Met. 168, 69 (1991)

    Article  CAS  Google Scholar 

  51. J. Murray, A. Peruzzi, J.P. Abriata, J. Phase Equilib. 13, 277–291 (1992)

    Article  CAS  Google Scholar 

  52. D.W. Zhou, J.S. Liu, S.H. Xu, P. Peng, Comput. Mater. Sci. 51, 409 (2012)

    Article  CAS  Google Scholar 

  53. D.W. Zhou, J.S. Liu, S.H. Xu, P. Peng, Comput. Mater. Sci. 86, 24 (2014)

    Article  CAS  Google Scholar 

  54. B.R. Sahu, Mater. Sci. Eng. B 49, 74 (1997)

    Article  Google Scholar 

  55. L. Vegard, Z. Phys. 5, 17 (1921)

    Article  CAS  ADS  Google Scholar 

  56. R. Boulechfar, H. Meradji, S. Ghemid, S. Drablia, B. Bouhafs, Solid State Sci. 16, 1 (2013)

    Article  CAS  ADS  Google Scholar 

  57. Y. Khenioui, R. Boulechfar, N. Maazi, S. Ghemid, Int. J. Mod. Phys. B 32(14), 1850167 (2018)

    Article  CAS  ADS  Google Scholar 

  58. D. Chen, C. Xia, X. Liu, Y. Wu, M. Wang, Materials 12(9), 1539 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  59. J. Xu, T. Oguchi, A. Freeman, Phys. Rev. B 36, 4186 (1987)

    Article  CAS  ADS  Google Scholar 

  60. P. Ravindran, R. Asokamani, Phys. Rev. B 50, 668 (1994)

    Article  CAS  ADS  Google Scholar 

  61. M. Jahnátek, M. Krajčí, J. Hafner, Philos. Mag. 87, 1769 (2007)

    Article  ADS  Google Scholar 

  62. K. Nakamura, J. Kimura, Mater. Sci. 26, 2208 (1991)

    Article  CAS  ADS  Google Scholar 

  63. M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon, Oxford, 1956)

    Google Scholar 

  64. J. Wang, S. Yip, Phys. Rev. Lett. 71, 4182 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  65. R. Hill, Proc. Phys. Soc. Lond. 65, 349 (1952)

    Article  ADS  Google Scholar 

  66. W. Voigt, Lehrbush der Kristallphysik (Taubner, Leipzig, 1928)

    Google Scholar 

  67. A. Reuss, Z. Angew, Math. Phys. 9, 49 (1929)

    CAS  Google Scholar 

  68. C.H. Jenkins, S.K. Khanna, Mech. Mater. 62 (2005)

  69. S.F. Pugh, Philos. Mag. 45, 823 (1957)

    Article  Google Scholar 

  70. J.J. Lewandowski, W.H. Wang, A.L. Greer, Philos. Mag. Lett. 85, 77 (2005)

    Article  CAS  ADS  Google Scholar 

  71. H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Comput. Mater. Sci. 44, 774–777 (2008)

    Article  CAS  Google Scholar 

  72. X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Intermetallics 19, 1275 (2011)

    Article  CAS  Google Scholar 

  73. A.T. Petit, L.P. Dulong, Ann. Chim. Phys. 10(1819), 395–2475 (2000)

    Google Scholar 

  74. G. Abadias, M.B. Kanoun, S. Goumri-Said, L. Koutsokeras, S.N. Dub, Ph. Djemia, Phys. Rev. B 90, 144107 (2014)

    Article  ADS  Google Scholar 

  75. M.B. Kanoun, S. Goumri-Said, Surf. Coat. Technol. 255, 140–145 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSP2023R82), King Saud University, Riyadh, Saudi Arabia. Authors thanks Prof. Waleed K. Ahmed from College of Engineering, United Arab Emirates for his carful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Each author played a significant role in the research and contributed equally to the overall development and completion of the paper.

Corresponding authors

Correspondence to H. Meradji, R. Khenata or Souraya Goumri-Said.

Ethics declarations

Conflict of interest

The authors state that the research was conducted without any potential conflict of interest arising from commercial or financial relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulechfar, R., Sayad, D., Khenioui, Y. et al. Theoretical investigations of Zr-concentration influence on the thermodynamic, elastic, electronic, and structural stability of D022/L12-Al3Ti. Eur. Phys. J. B 97, 1 (2024). https://doi.org/10.1140/epjb/s10051-023-00643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00643-7

Navigation