Skip to main content
Log in

Recent progress in the characterization and application of exo-electrogenic microorganisms

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Exo-electrogenic microorganisms are characterized by their special metabolic capability of transferring metabolic electrons out of their cell, into insoluble external electron acceptors such as iron or manganese oxides and electrodes, or vice versa take up electron from electrodes. Their conventional application is primarily limited to microbial fuel cells for electrical power generation and microbial electrolysis cells for the production of value-added products such as biohydrogen, biomethane and hydrogen peroxide. The utility of exo-electrogenic organisms has expanded into many other applications in recent times. Such examples include microbial desalination cells, microbial electro-synthesis cells producing value-added chemicals such as bio-butanol and their applications in other carbon sequestration technologies. Additionally, electrochemically-active organisms are now beginning to be employed in biosensor applications for environmental monitoring. Additionally, the utility of biocathodes in bio-electrochemical systems is also a novel application in catalyzing the cathodic oxygen reduction reaction to enhance their electrochemical performance. Advances have also been made in the expansion and use of other organisms such as the usage of photosynthetic microorganisms for the fabrication of self-sustained bio-electrochemical systems. This review attempts to provide a comprehensive picture of the state-of the art of exo-electrogenic organisms and their novel utility in bioelectrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai C, Hou S, Yan Z, Zheng X, Amanze C, Chai L, Qiu G, Zeng W (2019) Recovery of metals from acid mine drainage by bioelectrochemical system inoculated with a novel exoelectrogen, Pseudomonas sp. E8. Microorganisms 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco-Gómez R, Ramió-Pujol S, Bañeras L, Colprim J, Balaguer MD, Puig S (2019) Unravelling the factors that influence the bio-electrorecycling of carbon dioxide towards biofuels. Green Chem 21(3):684–691

    Article  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189. https://doi.org/10.1128/AEM.71.4.2186-2189.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xia X, Liang P, Cao X, Sun H, Huang X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu G, Zhang R, Qin B, Luo Y, Hou Y (2012) Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure. Bioresour Technol 116:507–511

    Article  CAS  PubMed  Google Scholar 

  • Chung K, Okabe S (2009) Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnol Bioeng 104:901–910. https://doi.org/10.1002/bit.22453

    Article  CAS  PubMed  Google Scholar 

  • Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18–19

    CAS  Google Scholar 

  • De Los Ángeles Fernandez M, De Los Ángeles Sanroman M, Marks S, Makinia J, Campo AG, Rodrigo M, Fernandez FJ (2016) A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. Bioresour Technol 200:396–404

    Article  PubMed  Google Scholar 

  • Deng H, Xue H, Zhong W (2017a) A novel exoelectrogenic bacterium phylogenetically related to Clostridium sporogenes isolated from copper contaminated soil. Electroanalysis 29:1294–1300

    Article  CAS  Google Scholar 

  • Deng Y, Huang Z, Ruan W, Zhao M, Miao H, Ren H (2017b) Co-inoculation of cellulolytic rumen bacteria with methanogenic sludge to enhance methanogenesis of rice straw. Int Biodeterior Biodegradation 117:224–235

    Article  CAS  Google Scholar 

  • Dessì P, Rovira-Alsina L, Sánchez C, Dinesh GK, Tong W, Chatterjee P, Tedesco M, Farràs P, Hamelers HMV, Puig S (2021) Microbial electrosynthesis: towards sustainable biorefineries for production of green chemicals from CO2 emissions. Biotechnol Adv 46:107675

    Article  PubMed  Google Scholar 

  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I (2009) Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl Environ Microbiol 75:7326–7334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei S, Ren H (2022) Determining the dose-response curve of exoelectrogens: a microscale microbial fuel cell biosensor for water toxicity monitoring. Micromachines 2022(13):1560

    Article  Google Scholar 

  • Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hu H, Yu C-P (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 9:e113379. https://doi.org/10.1371/journal.pone.0113379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando E, Keshavarz T, Kyazze G (2012) Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int Biodeterior Biodegr 72:1–9

    Article  CAS  Google Scholar 

  • Gao Y, Ryu J, Liu L, Choi S (2020) A simple, inexpensive, and rapid method to assess antibiotic effectiveness against exoelectrogenic bacteria. Biosens Bioelectron 168:112518

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Cao X, Song X, Wang Y, Si Z, Zhao Y, Wang W, Tesfahunegn AA (2020) Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol 296:122350

    Article  CAS  PubMed  Google Scholar 

  • González T, Puigagut J, Vidal G (2021) Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation. Sci Total Environ 753:142075

    Article  PubMed  Google Scholar 

  • Greenman J, Ieropoulos IA (2017) Allometric scaling of microbial fuel cells and stacks: the lifeform case for scale-up. J Power Sources 356:365–370

    Article  CAS  Google Scholar 

  • Нnatush S, Maslovska O, Sehin T, Vasyliv O, Kovalchuk M, Malovanyy M (2020) Waste water treatment by exoelectrogenic bacteria isolated from technogenically transformed lands. Ecolo Que 31(1):35–44

    Google Scholar 

  • Holmes DE, Bond DR, Lovley DR (2004a) Electron transfer by desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004b) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe CJ, Bombelli P (2020) Electricity production by photosynthetic microorganisms. Joule 4:2065–2069

    Article  Google Scholar 

  • Hu Y, Rehnlund D, Klein E, Gescher J, Niemeyer CM (2020) Cultivation of exoelectrogenic bacteria in conductive DNA nanocomposite hydrogels yields a programmable biohybrid materials system. ACS Appl Mater Interfaces 12:14806–14813

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhu N, Cao Y, Peng Y, Wu P, Dong W (2014) Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell. Appl Biochem Biotechnol 175(4):1879–1891

    Article  PubMed  Google Scholar 

  • Hubenova Y, Hubenova E, Mitov M (2020) Electroactivity of the gram-positive bacterium Paenibacillus dendritiformis MA-72. Bioelectrochemistry 136:107632

    Article  CAS  PubMed  Google Scholar 

  • Jafary T, Al-Mamun A, Alhimali H, Baawain MS, Rahman S, Tarpeh WA, Dhar BR, Kim BH (2020) Novel two-chamber tubular microbial desalination cell for bioelectricity production, wastewater treatment and desalination with a focus on self-generated pH control. Desalination 481:114358

    Article  CAS  Google Scholar 

  • Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013) Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen Energy 38(8):3497–3502

  • Jiang Y, Zhong W, Han C, Deng H (2016) Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front Microbiol 7:1776

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Zhang Y, Liu Z, Ma Y, Kang J, Liu Y (2018) Isolation and characterization of an exoelectrogenic strain CL-1 from soil and electron transfer mechanism by linking electrochemistry and spectroscopy. Electrochim Acta 292:982–989

    Article  CAS  Google Scholar 

  • Jin X, Guo F, Liu Z, Liu Y, Liu H (2018) Enhancing the electricity generation and nitrate removal of microbial fuel cells with a novel denitrifying exoelectrogenic strain EB-1. Front Microbiol 9:2633

    Article  PubMed  PubMed Central  Google Scholar 

  • Jourdin L, Winkelhorst M, Rawls B, Buisman CJN, Strik DP (2019) Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: steering with CO2 loading rate and hydraulic retention time. Bioresour Technol Reports 7:100284

    Article  Google Scholar 

  • Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng 19:1535–1547

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308:122–130

    Article  CAS  Google Scholar 

  • Kim M, Hwang Y-J, Jung H-J, Park H, Ghim S-Y (2016) Bowmanella dokdonensis sp. nov., a novel exoelectrogenic bacterium isolated from the seawater of Dokdo. Korea Antonie Van Leeuwenhoek 109:907–914

    Article  CAS  PubMed  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107:13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  • LaBelle EV, May HD (2017) Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate. Front Microbiol 8:756

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zheng R, Zhang X, Liu Z, Zhu R, Zhang X, Gao D (2019a) A novel exoelectrogen from microbial fuel cell: bioremediation of marine petroleum hydrocarbon pollutants. J Environ Manage 235:70–76. https://doi.org/10.1016/j.jenvman.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao Y, Wu A, Wang Y (2019b) Investigation of hydrogen evolution on electrodeposited Ni/P coated carbon paper electrode in microbial fuel cell. Int J Electrochem Sci 14:7582–7593

    Article  CAS  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Marshall CW, Ross DE, Handley KM, Weisenhorn PB, Edirisinghe JN, Henry CS, Gilbert JA, May HD, Norman RS (2017) Metabolic reconstruction and modeling microbial electrosynthesis. Sci Rep 7:1–12

    Article  Google Scholar 

  • Moradian J, Xu Z, Shi Y, Fang Z, Yong Y (2019) Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int J Energy Res 44(1):325–333

    Article  Google Scholar 

  • Nadzri NAA, Yasin NHM, Bakar MHA, Thanakodi S, Salehmin MNI, Takriff MS, Aznan MFN, Maeda T (2023) Photosynthetic microbial desalination cell (PhMDC) using Chlamydomonas sp. (UKM6) and Scenedesmus sp. (UKM9) as biocatalysts for electricity production and water treatment. Int J Hydrogen Energy 48:11860–11873

    Article  CAS  Google Scholar 

  • Nazeer Z, Fernando EY (2022) A novel growth and isolation medium for exoelectrogenic bacteria. Enzyme Microb Technol 155:109995

    Article  CAS  PubMed  Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal M, Sharma R (2019) Exoelectrogenic response of Pichia fermentans influenced by mediator and reactor design. J Biosci Bioeng 127(6):714–720

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Keshavkant S, Jadhav S (2022) Electrogenic potential of Enterococcus faecalis DWW1 isolated from the anodic biofilm of a dairy wastewater fed dual chambered microbial fuel cell. J Water Process Eng 45:102503

    Article  Google Scholar 

  • Park D, Zeikus J (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61. https://doi.org/10.1007/s00253-002-0972-1

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306. https://doi.org/10.1006/anae.2001.0399

    Article  CAS  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134. https://doi.org/10.1016/S0378-1097(03)00354-9

    Article  CAS  PubMed  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B Contain Pap A Biol Character 84:260–276

    Google Scholar 

  • Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, Logan BE (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106:89–94

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Siddiqi SA, Al-Mamun A, Jafary T (2022) Sustainable leachate pre-treatment using microbial desalination cell for simultaneous desalination and energy recovery. Desalination 532:115708

    Article  CAS  Google Scholar 

  • Ramírez-Moreno M, Rodenas P, Aliaguilla M, Bosch-Jimenez P, Borràs E, Zamora P, Monsalvo V, Rogalla F, Ortiz JM, Esteve-Núñez A (2019) Comparative performance of microbial desalination cells using air diffusion and liquid cathode reactions: study of the salt removal and desalination efficiency. Front Energy Res 7:135

    Article  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21:259–264

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Yadav R, Chiranjeevi P, Patil SA (2021) Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis. Bioresour Technol 320:124289

  • Schilirò T, Tommasi T, Armato C, Hidalgo D, Traversi D, Bocchini S, Gilli G, Pirri CF (2016) The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials. Energy 106:277–284

    Article  Google Scholar 

  • Sharma SCD, Feng C, Li J, Hu A, Wang H, Qin D, Yu C-P (2016) Electrochemical characterization of a novel exoelectrogenic bacterium strain SCS5, isolated from a mediator-less microbial fuel cell and phylogenetically related to Aeromonas jandaei. Microbes Environ 31(3):213–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin HJ, Jung KA, Nam CW, Park JM (2017) A genetic approach for microbial electrosynthesis system as biocommodities production platform. Bioresour Technol 245:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Yang G, Guo Y, Zhang T (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7:3223–3236

    Article  Google Scholar 

  • Sun H, Zhang Y, Wu S, Dong R, Angelidaki I (2019) Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. Sci Total Environ 655:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495

    Article  CAS  PubMed  Google Scholar 

  • Tanneru HK, Suresh R, Ramanan AV, Mehdi S, Packirisamy M, Pillay P, Williamson S, Juneau P, Rengaswamy R (2016) Micro photosynthetic cell for power generation from algae: bio-electrochemical modeling and verification. Technology 4:249–258

    Article  Google Scholar 

  • Tanneru HK, Kuruvinashetti K, Pillay P, Rengaswamy R, Packirisamy M (2019) Perspective—micro photosynthetic power cells. J Electrochem Soc 166:B3012

    Article  CAS  Google Scholar 

  • Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, Ledezma P, Virdis B (2018) Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng 6:8485–8493

    Article  CAS  Google Scholar 

  • Wang YF, Masuda M, Tsujimura S, Kano K (2008) Electrochemical regulation of the end-product profile in Propionibacterium freudenreichii ET‐3 with an endogenous mediator. Biotechnol Bioeng 101(3):579–586

    Article  CAS  PubMed  Google Scholar 

  • Wang G-H, Cheng C-Y, Liu M-H, Chen T-Y, Hsieh M-C, Chung Y-C (2016) Utility of Ochrobactrum anthropi YC152 in a microbial fuel cell as an early warning device for hexavalent chromium determination. Sensors 16:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Liang P, Jiang Y, Liu P, Miao B, Hao W, Huang X (2018) Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment. Biosens Bioelectron 111:97–101

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Trujillo S, Liu H (2019) Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresour Technol 274:557–560

    Article  CAS  PubMed  Google Scholar 

  • Wen Q, Zhang H, Chen Z, Li Y, Nan J, Feng Y (2012) Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresour Technol 125:108–113

    Article  CAS  PubMed  Google Scholar 

  • Werner CM, Logan BE, Saikaly PE, Amy GL (2013) Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. J Memb Sci 428:116–122

    Article  CAS  Google Scholar 

  • Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156. https://doi.org/10.1038/ismej.2008.48

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Cheng S, Logan B, Regan J (2009) Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl Microbiol Biotechnol 85(5):1575–1587

    Article  PubMed  Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111:1108–1115. https://doi.org/10.1111/j.1365-2672.2011.05129.x

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Mou Z, Geng J, Zhang X, Li C (2016) Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment. Chemosphere 158:30–36

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Cao F, Kong Q, Zhou L, Yuan Q, Zhu Y, Wang Q (2018) Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem Eng J 339:479–486

    Article  CAS  Google Scholar 

  • Yamashita T, Ookawa N, Ishida M, Kanamori H, Sasaki H, Katayose Y, Yokoyama H (2016) A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment. Sci Rep 6:1–9

    Article  Google Scholar 

  • Yang M, Shi X (2019) Biosynthesis of Ag2S/TiO2 nanotubes nanocomposites by Shewanella oneidensis MR-1 for the catalytic degradation of 4-nitrophenol. Environ Sci Pollut Res 26:12237–12246

    Article  CAS  Google Scholar 

  • Yang Y, Wang Y-Z, Fang Z, Yu Y-Y, Yong Y-C (2018) Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation. Anal Bioanal Chem 410:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang J, Zhang B, Liu D, Jia J, Li F, Song H (2022) Engineering Shewanella carassii, a newly isolated exoelectrogen from activated sludge, to enhance methyl orange degradation and bioelectricity harvest. Synth Syst Biotechnol 7(3):918–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi Y, Xie B, Zhao T, Liu H (2018) Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. Bioresour Technol 265:415–421

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Abu-Reesh IM, He Z (2015) Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chem Eng J 270:437–443

    Article  CAS  Google Scholar 

  • Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L (2008) Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Commun 10(10):1641–1643

    Article  CAS  Google Scholar 

  • Zhang F, Chen M, Zhang Y, Zeng RJ (2012a) Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. J Memb Sci 417:28–33

    Article  Google Scholar 

  • Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012b) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423

    Article  CAS  PubMed  Google Scholar 

  • Zhi E, Song Y, Duan L, Yu H, Peng J (2015) Spatial distribution and diversity of microbial community in large-scale constructed wetland of the Liao River Conservation Area. Environ Earth Sci 73:5085–5094

    Article  Google Scholar 

  • Zhou S, Huang S, Li Y, Zhao N, Li H, Angelidaki I, Zhang Y (2018) Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta 186:368–371

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Li R, Zhang S, Zhao S, Sharma M, Kulshrestha S, Khan A, Kakade A, Han H, Niu Y (2021) A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng 118:210–222

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wu Y, Xu Y, Wang Z, Fu H, Zheng Y (2022) Carbamazepine degradation and genome sequencing of a novel exoelectrogen isolated from microbial fuel cells. Sci Total Environ 838:156161

    Article  CAS  PubMed  Google Scholar 

  • Zhong WH, Cai LC, Wei ZG, Xue HJ, Han C, Deng H (2017) The effects of closed circuit microbial fuel cells on methane emissions from paddy soil vary with straw amount. Catena 154:33–39

    Article  CAS  Google Scholar 

  • Zohri A, Kassim R, Hassan S (2022) Methylene blue as an exogenous electron mediator on bioelectricity from molasses using Meyerozyma guilliermondii as biocatalyst. Biomass Convers Biorefinery 15:1–9

    Google Scholar 

  • Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-Tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137. https://doi.org/10.1128/AEM.02732-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

EF would like to thank the department of biological sciences, Rajarata University, Sri Lanka and the Stevens Institute of Technology, USA for the funding of ongoing work pertaining to exo-electrogenic bacteria.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to writing and editing the manuscript.

Corresponding author

Correspondence to Eustace Fernando.

Ethics declarations

Conflict of interest

All authors of the manuscript declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayathilake, C., Piyumika, G., Nazeer, Z. et al. Recent progress in the characterization and application of exo-electrogenic microorganisms. Antonie van Leeuwenhoek 117, 10 (2024). https://doi.org/10.1007/s10482-023-01916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10482-023-01916-y

Keywords

Navigation