Skip to main content
Log in

Transverse Crack Initiation in Thin-Ply Laminates Subjected to Tensile Loading at Low and Cryogenic Temperatures

  • Published:
Mechanics of Composite Materials Aims and scope

Laminates with ultra-thin plies is a promising new development for polymeric composite materials expected to provide superior resistance to intralaminar crack propagation. The ply thickness effect on the crack initiation stress that according to some theoretical studies on fiber/matrix debonding does not depend on the ply thickness was investigated. Ultra-thin ply carbon fiber/epoxy cross-ply laminates subjected to tensile loading at room, –50, and –150°C temperatures relevant for cryogenic fuel storage, aeronautical, and aerospace applications were studied. The stochastic nature of the crack initiation stress in the 90°-plies was analyzed using Weibull strength distribution. The results obtained show delayed transverse crack initiation only in the thinnest plies with a clear trend that the scale parameter is much larger. This thickness effect on initiation is different than that for crack propagation which is observable in much larger ply thickness range. Regarding crack propagation, it was found that in most cases even at very high applied strain levels (1.5%) only a few transverse cracks have propagated from the specimen edges to its middle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. Parvizi, K. W. Garrett, and J. E. Bailey, “Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates,” J. Mater. Sci., 13, No.1, 195-201 (1978).

    Article  CAS  Google Scholar 

  2. G. J. Dvorak and N. Laws, “Analysis of first ply failure in composite laminates,” Eng. Fract. Mech., 25, Nos. 5-6, 763-770 (1986).

    Article  Google Scholar 

  3. G. J. Dvorak and N. Laws, “Analysis of progressive matrix cracking in composite laminates II. First ply failure,” J. Compos. Mater., 21 No. 4, 309-329 (1987).

    Article  CAS  Google Scholar 

  4. H. Saito, H. Takeuchi, and I. Kimpara, “Experimental evaluation of the damage growth restraining in 90° layer of thin-ply CFRP cross-ply laminates,” Adv. Compos. Mater., 21, No.1, 57-66 (2012).

    Article  CAS  Google Scholar 

  5. T. Yokozeki, Y. Aoki, and T. Ogasawara, “Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates,” Compos. Struct., 82 No. 3, 382-389 (2008).

    Article  Google Scholar 

  6. R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, and C. Dransfeld, “Thin ply composites: Experimental characterization and modeling of size-effects,”. Compos. Sci. Tech., 101, 121-132 (2014).

    Article  CAS  Google Scholar 

  7. S. Sihn, R. Y. Kim, K. Kawabe, and S.W. Tsai, “Experimental studies of thin-ply laminated composites,” Compos. Sci. Tech., 67, No. 6, 996-1008 (2007).

    Article  CAS  Google Scholar 

  8. A. Wagih, P. Maimí, E. V. González, N. Blanco, J. R. S. De Aja, F. M. De La Escalera, R. Olsson, and E. Alvarez, “Damage sequence in thin-ply composite laminates under out-of-plane loading,” Compos. Appl. Sci. Manuf., 87, 66-77 (2016).

    Article  CAS  Google Scholar 

  9. J. Cugnoni, R. Amacher, S. Kohler, J. Brunner, E. Kramer, C. Dransfeld, W. Smith, K. Scobbie, L. Sorensen, and J. Botsis, “Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance,” Compos. Sci. Tech., 168, 467-477 (2018).

    Article  CAS  Google Scholar 

  10. G. Guillamet, A. Turon, J. Costa, J. Renart, P. Linde, and J. A. Mayugo, “Damage occurrence at edges of non-crimpfabric thin-ply laminates under off-axis uniaxial loading,” Compos. Sci. Tech., 98, 44-50 (2014).

    Article  CAS  Google Scholar 

  11. T. Yokozeki, A. Kuroda, A. Yoshimura, T. Ogasawara, and T. Aoki. “Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings,” Compos. Struct., 93, No. 1, 49-57 (2010).

    Article  Google Scholar 

  12. I. G. García, J. Justo, A. Simon, and V. Mantič, “Experimental study of the size effect on transverse cracking in crossply laminates and comparison with the main theoretical models,” Mech. Mater., 128, 24-37 (2019).

    Article  Google Scholar 

  13. M. Herráez, D. Mora, F. Naya, C. S. Lopes, C. González, and J. Llorca, “Transverse cracking of cross-ply laminates: A computational micromechanics perspective,” Compos. Sci. Tech., 110, 196-204 (2015).

    Article  Google Scholar 

  14. A. Arteiro, G. Catalanotti, J. Reinoso, P. Linde, and P. P. Camanho, “Simulation of the mechanical response of thin-ply composites: from computational micro-mechanics to structural analysis,” Arch. Comput. Meth. Eng., 26, No. 5, 1445-1487 (2019).

    Article  Google Scholar 

  15. P. P. Camanho, C. G. Dávila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Compos. Appl. Sci. Manuf., 37, No. 2, 165-176 (2006).

    Article  Google Scholar 

  16. A. Arteiro, G. Catalanotti, A. R. Melro, P. Linde, and P. P. Camanho, “Micro-mechanical analysis of the in situ effect in polymer composite laminates,” Compos. Struct., 116, No.1, 827-840 (2014).

    Article  Google Scholar 

  17. J. Varna, “Crack separation based models for microcracking”, In: C.H. Zweben and P. Beaumont, eds. Comprehensive Composite Materials II, Vol. 2., Elsevier, (2018), pp. 192-220.

    Chapter  Google Scholar 

  18. F. París, M. L. Velasco, and E. Correa, “The scale effect in composites: An explanation physically based on the different mechanisms of damage involved in failure,” Compos. Struct., 257, 113089 (2021).

    Article  Google Scholar 

  19. L. Di Stasio, J. Varna, and Z. Ayadi, “Effect of the proximity to the 0°/90° interface on Energy Release Rate of fiber/matrix interface crack growth in the 90°-ply of a cross-ply laminate under tensile loading,” J. Compos. Mater., 54, No. 21, 3021-3034 (2020).

    Article  Google Scholar 

  20. M. Sippel, “Promising roadmap alternatives for the SpaceLiner,” Acta Astronautica, 66, No. 11-12, 1652-1658 (2010).

    Article  Google Scholar 

  21. ASTM D 3039-08 Standard Test Method for tensile Properties of Polymer Matrix Composite Materials, (2012).

  22. Z. Sápi and R. Butler, “Properties of cryogenic and low temperature composite materials – A review,” Cryogenics, 111, 103190, (2020).

    Article  Google Scholar 

  23. S. Choi and B. V. Sankar, “Micromechanical analysis of composite laminates at cryogenic temperatures,” J. Compos. Mater., 40, 1077–1091 (2006).

    Article  CAS  Google Scholar 

  24. S. Usami, H. Ejima, T. Suzuki, and K. Asano, “Cryogenic small-flaw strength and creep deformation of epoxy resins,” Cryogenics, 39, 729–738 (1999).

    Article  CAS  Google Scholar 

  25. S. Kanagaraj and S. Pattanayak, “Thermal expansion of glass fabric-epoxy composites at cryogenic temperatures,” AIP Conference Proceedings 711, 201 (2004).

    Article  CAS  Google Scholar 

  26. S. Kohler, J. Cugnoni, R. Amacher, and J. Botsis, “Transverse cracking in the bulk and at the free edge of thin-ply composites: Experiments and multiscale modelling,” Compos. Appl. Sci. Manuf., 124,105468 (2019).

    Article  CAS  Google Scholar 

  27. J. Varna, “Modelling mechanical performance of damaged laminates,” J. Compos. Mater., 47, No. 20-21, 2443-2474 (2013).

    Article  Google Scholar 

  28. P. W. M. Peters, “The Strength Distribution of 90° Plies in 0/90/0 Graphite-Epoxy Laminates,” J. Compos. Mater., 18, No. 6, 545-556 (1984).

    Article  CAS  Google Scholar 

  29. P. W. Manders, T. W. Chou, F. R. Jones, and J. W. Rock, “Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminates,” J. Mater. Sci., 18, No. 10, 2876-2889 (1983).

    Article  Google Scholar 

  30. H. Ben Kahla, Z. Ayadi, F. Edgren, A. Pupurs, and J. Varna. “Statistical model for initiation governed intralaminar cracking in composite laminates during tensile quasi-static and cyclic tests,” Int. J. Fatig., 116, 1-12 (2018).

  31. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech., 293-297 (1951).

Download references

Acknowledgements

This work was supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No.1.1.1.2/VIAA/3/19/408). The authors would also like to acknowledge research project “Cryogenic Hypersonic Advanced Tank Technologies (CHATT)” coordinated by DLR-SART and funded by the EU within the 7th Framework Programme Theme 7 Transport. Experimental work of Mr. Hugo Scaglia is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pupurs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupurs, A., Loukil, M.S., Marklund, E. et al. Transverse Crack Initiation in Thin-Ply Laminates Subjected to Tensile Loading at Low and Cryogenic Temperatures. Mech Compos Mater 59, 1049–1064 (2024). https://doi.org/10.1007/s11029-023-10156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10156-0

Keywords

Navigation