Skip to main content
Log in

Smart Fabric Based Wearable Thermoelectric Device with UV Blocking and Antibacterial Capability for Energy Harvesting Applications

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The current research aimed at fabricating flexible fabric for a wearable thermoelectric power generator. The Zinc oxide nanoparticles were coated onto fabrics to develop a smart flexible low-cost textile-based thermoelectric generators with enhanced UV protection and antibacterial properties. The high-resolution scanning electron microscope results showed the synthesized samples to have a uniform and dense coating of Zinc oxide nanorods. The XRD pattern revealed the formation of wurtzite structured Zinc oxide nanorods. The synthesized fabric showed an excellent UV blocking factor and high Seebeck coefficient and a power factor. A flexible fabric-based thermoelectric device was fabricated, and the output voltage for varying temperatures was measured. The results indicate that the fabricated fabrics would open promising avenues in the field of designing energy-harvesting smart clothes and human healthcare monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Y. Liu, C. Yiu, Z. Song, Y. Huang, K. Yao, T. Wong, J. Zhou, L. Zhao, X. Huang, S.K. Nejad, M. Wu, Sci. Adv. (2022)

  2. M. Zeng, D. Zavanelli, J. Chen, M. Saeidi-Javash, Y. Du, S. LeBlanc, G.J. Snyder, Y. Zhang, Chem. Soc. Rev. (2022). https://doi.org/10.1002/aelm.201800823

    Article  PubMed  Google Scholar 

  3. S. Anwar, M. Hassanpour Amiri, S. Jiang, M.M. Abolhasani, P.R. Rocha, K. Asadi, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202004326

  4. T.M. Tritt, M.A. Subramanian, MRS Bull. (2006). https://doi.org/10.1557/mrs2006.44

    Article  Google Scholar 

  5. C. Han, Z. Li, S. Dou, Sci Bull. (2014). https://doi.org/10.1007/s11434-014-0237-2

    Article  Google Scholar 

  6. P. Veluswamy, S. Sathiyamoorthy, F. Khan, A. Ghosh, M. Abhijit, Y. Hayakawa, H. Ikeda, Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2016.11.065

    Article  PubMed  Google Scholar 

  7. M.M. Ahmed, R. Zhao, J. Du, J. Li, J. Electrochem. Soc. (2022). https://doi.org/10.1149/1945-7111/ac534d

    Article  Google Scholar 

  8. M. Navaneethan, J. Archana, Y. Hayakawa, Cryst Eng Comm. (2013). https://doi.org/10.1039/C3CE41601A

    Article  Google Scholar 

  9. B. Patella, N. Moukri, G. Regalbuto, C. Cipollina, E. Pace, S. Di Vincenzo, G. Aiello, A. O’Riordan, R. Inguanta, Mater. (2022). https://doi.org/10.3390/ma15030713

    Article  Google Scholar 

  10. S. Boubenia, A.S. Dahiya, G. Poulin-Vittrant, F. Morini, K. Nadaud, D. Alquier, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-15447-w

    Article  PubMed  PubMed Central  Google Scholar 

  11. A. Kotlyar, N. Perkas, G. Amiryan, M. Meyer, W. Zimmermann, A. Gedanken, J. Appl. Polym. Sci. (2007). https://doi.org/10.1002/app.25893

    Article  Google Scholar 

  12. J. Lee, B. Llerena Zambrano, J. Woo, K. Yoon, T. Lee T, Adv. Mater. (2020). https://doi.org/10.1002/adma.201902532

  13. A. Brown, M. Bozman, T. Hickman, M.I. Hossain, T.G. Glover, K.N. West, C.W. West, Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.9b03258

  14. T.J. Athauda, W.S. LePage, J.M. Chalker, R.R. Ozer, Rsc Adv. (2014). https://doi.org/10.1039/C4RA01543F

    Article  Google Scholar 

  15. J.A. Lee, A.E. Aliev, J.S. Bykova, M.J. de Andrade, D. Kim, H.J. Sim, R.H. Baughman, Adv. Mater. (2016). https://doi.org/10.1002/adma.201600709

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Zheng, Q. Zhang, W. Jin, Y. Jing, X. Chen, X. Han, Q. Bao, Y. Liu, X. Wang, S. Wang, Y. Qiu, J. Mater. Chem. A. (2020). https://doi.org/10.1039/C9TA12494B

    Article  Google Scholar 

  17. Q. Wu, J. Hu, Smart Struct. Syst. (2017). https://doi.org/10.1088/1361-665X/aa5694

    Article  Google Scholar 

  18. A. Lund, Y. Tian, S. Darabi, C. Müller, J. Power. Sources. (2020). https://doi.org/10.1016/j.jpowsour.2020.228836

    Article  Google Scholar 

  19. H. Hardianto, G.D. Mey, B. Malengier, L.V. Langenhove, J. Ind. Text. (2022). https://doi.org/10.1177/1528083720910686

    Article  Google Scholar 

  20. B. Lincoln, R.A. Sujatha, P. Veluswamy, A. Majumdar, Energy Convers Manag. (2023). https://doi.org/10.1016/j.enconman.2023.117364

    Article  Google Scholar 

  21. A. Saranya, T. Devasena, H. Sivaram, R. Jayavel, Mater. Sci. Semicond. (2019). https://doi.org/10.1016/j.mssp.2018.03.028

    Article  Google Scholar 

  22. T.J. Athauda, P. Hari, R.R. Ozer, ACS Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am401229a

    Article  PubMed  Google Scholar 

  23. Y.W. Liu, C.H. Zhang, Z.Q. Wang, X. Fu, R. Wei, RSC Adv. (2016). https://doi.org/10.1039/C6RA19993C

    Article  PubMed  Google Scholar 

  24. M.D. Rosa, E. Medeiros, J.A. Malmonge, K.S. Gregorski, D.F. Wood, L.H. Mattoso, G. Glenn, W.J. Orts, S.H. Imam, Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  Google Scholar 

  25. P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, M. Naushad, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.275

    Article  Google Scholar 

  26. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.07.245

    Article  Google Scholar 

  27. N. Tu, H. Van Bui, D.Q. Trung, A.T. Duong, D.M. Thuy, D.H. Nguyen, K.T. Nguyen, P.T. Huy, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.03.395

    Article  Google Scholar 

  28. A.M. Díez-Pascual, A.L. Díez-Vicente, Biomacromol. (2015). https://doi.org/10.1021/acs.biomac.5b00447

    Article  Google Scholar 

  29. D.K. Subbiah, G.K. Mani, K.J. Babu, A. Das, J.B. Rayappan, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.05.110

    Article  Google Scholar 

  30. D.G. Stanford, K.E. Georgouras, M.T. Pailthorpe, J. Eur. Acad. Dermatol. Venereol. (1997). https://doi.org/10.1016/S0926-9959(96)00101-8

    Article  Google Scholar 

  31. N.R. Dhineshbabu, S. Bose, ACS omega. (2018). https://doi.org/10.1021/acsomega.8b00822

  32. Z. Wang, K. Yoshinaga, X.R. Bu, M. Zhang, J. Hazard. Mater. (2015). https://doi.org/10.1016/j.jhazmat.2015.01.033

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, Mater. Sci. Eng. CC. (2012). https://doi.org/10.1016/j.msec.2012.07.011

    Article  Google Scholar 

  34. J.A. Quek, S.M. Lam, J.C. Sin, A.R. Mohamed, J Photochem Photobiol B. Biol. (2018). https://doi.org/10.1016/j.jphotobiol.2018.07.030

    Article  Google Scholar 

  35. A. Farouk, S. Moussa, M. Ulbricht, E. Schollmeyer, T. Textor, Text. Res. J. (2014). https://doi.org/10.1177/0040517513485623

    Article  Google Scholar 

  36. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H. Kaus, L.C. Ann, S.K. Bakhori, H. Hasan, D. Mohamad, Nanomicro Lett. (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  PubMed  Google Scholar 

  37. B. Lallo da Silva, M.P. Abuçafy, E. Berbel Manaia, J.A. Oshiro Junior, B.G. Chiari-Andréo, R.C. Pietro, L.A. Chiavacci, Int. J. Nanomedicine. (2019). https://doi.org/10.2147/IJN.S216204

Download references

Acknowledgements

The authors acknowledge SRMIST for high resolution scanning electron microscope (HR-SEM) facility and the XRD FACILITY at SRMIST set up with support from MNRE (Project No. 31/03/2014-15/PVSE-R&D), Government of India. We gratefully acknowledge the Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Program through the Department of Science and Technology (DST) funded by the Ministry of Science and Technology (DST/INSPIRE/04/2017/002629) and We acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the research facilities. We thank SRIHER (DU) for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

BL: conceptualization, methodology, writing—original draft preparation. AS: supervision, writing—reviewing and editing. PV: visualization, validation, writing—reviewing and editing. HI: technical support, writing—reviewing and editing. AM: data curation and analysis.

Corresponding authors

Correspondence to Annie Sujatha or PandiyarasanVeluswamy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 185 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lincoln, B., Sujatha, A., PandiyarasanVeluswamy et al. Smart Fabric Based Wearable Thermoelectric Device with UV Blocking and Antibacterial Capability for Energy Harvesting Applications. Braz J Phys 54, 36 (2024). https://doi.org/10.1007/s13538-023-01409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01409-3

Keywords

Navigation